Fracture toughness and high temperature strength of unidirectionally solidified Nb–Si binary and Nb–Ti–Si ternary alloys
暂无分享,去创建一个
Y. Kimura | Y. Mishima | S. Miura | N. Sekido | F. Wei
[1] Y. Mishima,et al. Effects of Zr on the eutectoid decomposition behavior of Nb3Si into (Nb)/Nb5Si3 , 2005 .
[2] Y. Kimura,et al. Solidification Process and Mechanical Behavior of the Nb/Nb5Si3 Two Phase Alloys in the Nb-Ti-Si System , 2004 .
[3] R. Tanaka,et al. Microstructure and mechanical properties of Nb/Nb5Si3 in situ composites in Nb–Mo–Si and Nb–W–Si systems , 2004 .
[4] S. Hanada,et al. Toughness and strength characteristics of Nb-W-Si ternary alloys prepared by Arc melting , 2003 .
[5] B. Bewlay,et al. A review of very-high-temperature Nb-silicide-based composites , 2003 .
[6] K. Chan. Relationships of fracture toughness and dislocation mobility in intermetallics , 2003 .
[7] J. Lewandowski,et al. Ultrahigh-Temperature Nb-Silicide-Based Composites , 2003 .
[8] K. Chan. Alloying effects on fracture mechanisms in Nb-based intermetallic in-situ composites , 2002 .
[9] Seiji Miura,et al. (Nb)/(Nb, Ti)5Si3二相合金の機械的性質に及ぼすラメラー間隔の影響 , 2000 .
[10] 英俊 上野,et al. 一方向凝固したNb-xMo-22Ti-18Si系In-Situ複合材料の組織と機械的性質 , 2000 .
[11] 岡本 博明,et al. Desk handbook phase diagrams for binary alloys , 2000 .
[12] B. Bewlay,et al. Processing high-temperature refractory-metal silicide in-situ composites , 1999 .
[13] D. Davidson,et al. Effects of Ti addition on cleavage fracture in Nb-Cr-Ti solid-solution alloys , 1999 .
[14] R. Ritchie,et al. Fracture toughness and R-Curve behavior of laminated brittle-matrix composites , 1998 .
[15] D. Farkas. Atomistic simulations of fracture in the B2 phase of the Nb–Ti–Al system , 1998 .
[16] D. Dimiduk,et al. Advanced intermetallic alloys—beyond gamma titanium aluminides , 1997 .
[17] B. Bewlay,et al. Refractory metal-intermetallic in-situ composites for aircraft engines , 1997 .
[18] B. Bewlay,et al. The balance of mechanical and environmental properties of a multielement niobium-niobium silicide-basedIn Situ composite , 1996 .
[19] W. Soboyejo,et al. Effects of reinforcement morphology on the fatigue and fracture behavior of MoSi2/Nb composites , 1996 .
[20] B. Bewlay,et al. High-temperature refractory metal-intermetallic composites , 1996 .
[21] J. Yeomans,et al. Microstructure and fracture toughness of nickel particle toughened alumina matrix composites , 1996, Journal of Materials Science.
[22] B. Bewlay,et al. Solidification processing of high temperature intermetallic eutectic-based alloys , 1995 .
[23] H. Fraser,et al. Deformation mechanisms in intermetallic compounds based on Nb3Al , 1993 .
[24] D. Dimiduk,et al. Strength and toughness of a Nb/Nb5Si3 composite , 1993 .
[25] D. Dimiduk,et al. Strength and ductile-phase toughening in the two-phase Nb/Nb5Si3 alloys , 1991 .
[26] D. Dimiduk,et al. Phase relations and transformation kinetics in the high Nb region of the Nb-Si system , 1991 .
[27] W. Kurz,et al. Fundamentals of Solidification , 1990 .
[28] Donald R. Sadoway,et al. Refractory Metals : extraction, processing and applications : proceedings of a symposium sponsored by the Reactive Metals Committee, held at the Annual Meeting of The Minerals, Metals & Materials Society in New Orleans, February 17-21, 1991 , 1990 .
[29] M. Ashby,et al. Flow characteristics of highly constrained metal wires , 1989 .
[30] D. Munz,et al. Fracture toughness calculation from maximum load in four point bend tests of chevron notch specimens , 1980 .