Implementing optical tweezers at high pressure in a diamond anvil cell

Diamond anvil cells allow us to study the behaviour of materials at pressures up to hundreds of gigaPascals in a small and convenient instrument, however physical access to the sample is impossible once it is pressurised. Optical tweezers use tightly focussed lasers to trap and hold microscopic objects, and their ability to measure nanometric displacements and femtonewton forces makes them ubiquitous across the nano and bio sciences. We show that optical tweezers can be used to hold and manipulate particles in such a cell, in the ``macro tweezers'' geometry allowing us to use objective lenses with a higher working distance. Traps are structured to overcome the limitations imposed by the sample cell. Wedemonstrate the effectiveness of the technique by measuring water's viscosity up to 1.2 GPa. The maximum pressure reached was limited by the water crystallising under pressure.

[1]  Miles Padgett,et al.  Particle tracking stereomicroscopy in optical tweezers: control of trap shape. , 2010, Optics express.

[2]  Amanda J. Wright,et al.  An SLM-based Shack–Hartmann wavefront sensor for aberration correction in optical tweezers , 2010 .

[3]  K. Neuman,et al.  Optical trapping. , 2004, The Review of scientific instruments.

[4]  Pavel Zemánek,et al.  Axial optical trap stiffness influenced by retro-reflected beam , 2007 .

[5]  R. Di Leonardo,et al.  Digital holographic tracking of microprobes for multipoint viscosity measurements. , 2011, Optics express.

[6]  E. Abramson Viscosity of water measured to pressures of 6 GPa and temperatures of 300 ° C , 2007 .

[7]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[8]  Peter John Rodrigo,et al.  Four-dimensional optical manipulation of colloidal particles , 2005 .

[9]  Graham M. Gibson,et al.  Stereoscopic particle tracking for 3D touch, vision and closed-loop control in optical tweezers , 2011 .

[10]  S. Block,et al.  Pressure Measurement Made by the Utilization of Ruby Sharp-Line Luminescence , 1972, Science.

[11]  D. Grier A revolution in optical manipulation , 2003, Nature.

[12]  Miles Padgett,et al.  Holographic optical tweezers and their relevance to lab on chip devices. , 2011, Lab on a chip.

[13]  A. Ashkin Acceleration and trapping of particles by radiation pressure , 1970 .

[14]  Peter Bøggild,et al.  Actuation of microfabricated tools using multiple GPC-based counterpropagating-beam traps. , 2005, Optics express.

[15]  Monika Ritsch-Marte,et al.  Optical macro-tweezers: trapping of highly motile micro-organisms , 2011 .

[16]  D B Phillips,et al.  A compact holographic optical tweezers instrument. , 2012, The Review of scientific instruments.

[17]  W. Nellis,et al.  The ruby pressure standard to 150 GPa , 2005 .

[18]  William A. Bassett,et al.  Miniature diamond anvil pressure cell for single crystal x‐ray diffraction studies , 1974 .

[19]  Miles J. Padgett,et al.  Defining the trapping limits of holographical optical tweezers , 2004 .

[20]  Monika Ritsch-Marte,et al.  Optical mirror trap with a large field of view. , 2009, Optics express.

[21]  C. Herbst,et al.  High-pressure viscosity of glass-forming liquids measured by the centrifugal force diamond anvil cell viscometer , 1993 .

[22]  Position clamping in a holographic counterpropagating optical trap. , 2011, Optics express.

[23]  A. Ashkin Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. , 1992, Methods in cell biology.

[24]  E. Abramson Viscosity of water measured to pressures of 6 GPa and temperatures of 300 degrees C. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  E. Herbolzheimer,et al.  The diamond‐anvil cell as a high‐pressure viscometer , 1992 .

[26]  H. Flyvbjerg,et al.  Power spectrum analysis for optical tweezers , 2004 .

[27]  Ke Xiao,et al.  Multidimensional optical fractionation of colloidal particles with holographic verification. , 2009, Physical review letters.

[28]  H. Tiziani,et al.  Multi-functional optical tweezers using computer-generated holograms , 2000 .

[29]  Miles Padgett,et al.  Microrheology with optical tweezers. , 2009, Lab on a chip.

[30]  Jonathan Leach,et al.  Aberration correction in holographic optical tweezers. , 2006, Optics express.

[31]  Johannes Courtial,et al.  Interactive approach to optical tweezers control. , 2006, Applied optics.

[32]  Toyohiko Yatagai,et al.  Nonmechanical Optical Manipulation of Microparticle Using Spatial Light Modulator , 1999 .

[33]  Tomáš Čižmár,et al.  Shaping the future of manipulation , 2011 .

[34]  Simon Hanna,et al.  Force sensing with a shaped dielectric micro-tool , 2012 .

[35]  W. Osten,et al.  Holographic twin traps , 2009 .

[36]  Anna Linnenberger,et al.  Increasing Trap Stiffness with Position Clamping in Holographic Optical Tweezers , 2022 .

[37]  Oto Brzobohatý,et al.  The holographic optical micro-manipulation system based on counter-propagating beams , 2010 .

[38]  H J Tiziani,et al.  Optical particle trapping with computer-generated holograms written on a liquid-crystal display. , 1999, Optics letters.