Reorientations of Flexible Spacecraft Using Momentum Exchange Devices

Abstract : We study rest-to-rest reorientations of flexible spacecraft using momentum exchange devices. A new and concise form of the equations of motion for a rigid body containing a cluster of gimbaled momentum wheels is developed using the Euler-Newton approach. Special restrictions of the gimbaled momentum wheel equations yield equations of motion for the momentum wheel cluster and the control moment gyroscope cluster. A mathematical model of a free spacecraft with Euler-Bernoulli appendages is developed. Using the assumed modes method, a complete set of equations is developed which describes the dynamics of a spacecraft with flexible appendages and gimbaled momentum wheels. Special attention is paid to singularity problems in control moment gyro clusters. A control law based on the singular value decomposition is developed which avoids torque output commands in the nearly singular direction. The stationary platform maneuver, a maneuver along the set of equilibrium solutions of a zero angular velocity spacecraft, is extended to the control moment gyro cluster. The set of equilibria for a control moment gyro cluster is a unique surface in gimbal angle space. A control law which reorients the spacecraft while remaining close to this surface is developed using a Lyapunov method.

[1]  A. Jacot,et al.  Control moment gyros in attitude control , 1965 .

[2]  B. J. Oconnor,et al.  A description of the CMG and its application to space vehicle control. , 1967 .

[3]  J. E. Keat Dynamical Equations of Nonrigid Satellites , 1970 .

[4]  A. H. Gale,et al.  Influence of Flexible Appendages on Dual-Spin Spacecraft Dynamics and Control , 1970 .

[5]  Christopher D. Hall Stationary-platform Maneuvers Of Gyrostat Satellites , 1970 .

[6]  P. Grote,et al.  Equations of Motion of Flexible Spacecraft , 1970 .

[7]  P. W. Likins,et al.  Results of flexible spacecraft attitude control studies utilizing hybrid coordinates , 1971 .

[8]  D. Lewis Mingori,et al.  Stable Limit Cycles due to Nonlinear Damping in Dual-Spin Spacecraft , 1970 .

[9]  G. T. Tseng,et al.  Constant and variable amplitude limit cycles in dual-spin spacecraft. , 1972 .

[10]  Leonard Meirovitch,et al.  A comparative study of stability methods for flexible satellites. , 1972 .

[11]  P. C. Hughes,et al.  Attitude Stability of a Dual-Spin Satellite with a Large Flexible Solar Array , 1973 .

[12]  F. Barbera,et al.  Liapunov stability analysis of spinning flexible spacecraft. , 1973 .

[13]  Vinod J. Modi,et al.  Attitude Dynamics of Satellites with Flexible Appendages- A Brief Review , 1974 .

[14]  G. Margulies Geometric Theory of Single-Gimbal Control Moment Gyro System , 1978 .

[15]  Roy R. Craig,et al.  Structural Dynamics: An Introduction to Computer Methods , 1981 .

[16]  John E. Cochran,et al.  Attitude Motion of Asymmetric Dual-Spin Spacecraft , 1980 .

[17]  Bong Wie,et al.  Quaternion feedback for spacecraft large angle maneuvers , 1985 .

[18]  Hwa-Suk Oh FEEDBACK CONTROL AND STEERING LAWS FOR SPACECRAFT USING SINGLE GIMBAL CONTROL MOMENT GYROS , 1988 .

[19]  Haim Weiss,et al.  Quarternion feedback regulator for spacecraft eigenaxis rotations , 1989 .

[20]  R. D. Quinn Equations of Motion for Structures in Terms of Quasi-Coordinates , 1990 .

[21]  Joseph A. Paradiso,et al.  Steering law design for redundant single-gimbal control moment gyroscopes. [for spacecraft attitude control] , 1990 .

[22]  John L. Junkins,et al.  Near-Minimum Time, Closed-Loop Slewing of Flexible Spacecraft , 1990 .

[23]  Srinivas R. Vadali,et al.  Preferred gimbal angles for single gimbal control moment gyros , 1989 .

[24]  Theresa W. Long,et al.  Satellite attitude control in the equivalent axis frame , 1992 .

[25]  R.H. Bishop,et al.  Adaptive control of space station with control moment gyros , 1992, IEEE Control Systems.

[26]  P. Bainum,et al.  3-D maneuver and vibration control of flexible spacecraft using the momentum exchange feedback control concept , 1992 .

[27]  R. C. Thompson,et al.  Survey of time-optimal attitude maneuvers , 1994 .

[28]  Mahmut Reyhanoglu,et al.  Planar Reorientation Maneuvers of Space Multibody Systems Using Internal Controls , 1992 .

[29]  Joseph A. Paradiso Global steering of single gimballed control moment gyroscopes using a directed search , 1992 .

[30]  Enrique Barbieri,et al.  A new minimum-time control law for a one-mode model of a flexible slewing structure , 1993, IEEE Trans. Autom. Control..

[31]  Srinivas R. Vadali,et al.  Quasi-Closed-Form Solution to the Time-Optimal Rigid Spacecraft Reorientation Problem , 1993 .

[32]  A. L. Schlack,et al.  Pointing accuracy of a dual-spin satellite due to torsional appendage vibrations , 1993 .

[33]  B. Wie,et al.  Time-optimal three-axis reorientation of a rigid spacecraft , 1993 .

[34]  Mark James Bell Near-minimum-time three-dimensional maneuvers of rigid and flexible spacecraft , 1993 .

[35]  Sahjendra N. Singh,et al.  Exact feedback linearization and control of space station using CMG , 1993, IEEE Trans. Autom. Control..

[36]  Brian R. Hoelscher,et al.  Optimal open-loop and feedback control using single gimbal control moment gyroscopes , 1993 .

[37]  Richard H. Rand,et al.  Spinup Dynamics of Axial Dual-Spin Spacecraft , 1994 .

[38]  Roberto Cristi,et al.  Adaptive Quaternion Feedback Regulation for Eigenaxis Rotations , 1994 .

[39]  Tarunraj Singh,et al.  Computation of Near-Minimum-Time Maneuvers of Flexible Structures by Parameter Optimization , 1994 .

[40]  Jianbo Lu,et al.  Feedback control logic for spacecraft eigenaxis rotations under slew rate and control constraints , 1994 .

[41]  S. R. Vadali,et al.  Suboptimal command generation for control moment gyroscopes and feedback control of spacecraft , 1994 .

[42]  Sub-Optimal Control of Rigid Spacecraft Reorientation Using Three Momentum Wheels. , 1995 .

[43]  Tarunraj Singh,et al.  Near-minimum-time maneuvers of large structures - Theory and experiments , 1994 .

[44]  Gerald S. Nurre,et al.  Preservicing mission - On-orbit modifications to Hubble Space Telescope pointing control system , 1995 .

[45]  L. Meirovitch,et al.  Hybrid equations of motion for flexible multibody systems using quasicoordinates , 1995 .

[46]  Christopher D. Hall,et al.  Momentum Transfer in Two-Rotor Gyrostats , 1996 .

[47]  Paul DeLaHunt,et al.  ATTITUDE DETERMINATION AND CONTROL OF CLEMENTINE DURING LUNAR MAPPING , 1996 .

[48]  Andre P. Mazzoleni,et al.  Double averaging approach to the study of spinup dynamics of flexible satellites , 1996 .