Pauson-Khand reactions in a photochemical flow microreactor.

Pauson-Khand reactions were achieved at ambient temperature without any additive using a photochemical flow microreactor. The efficiency of the reaction was better than that in a conventional batch reactor, and the reaction could be operated continuously for 1 h.

[1]  Jun-ichi Yoshida,et al.  Flash chemistry: fast chemical synthesis by using microreactors. , 2008, Chemistry.

[2]  Dietmar Seyferth,et al.  Comprehensive Organometallic Chemistry , 1984 .

[3]  J. Yoshida,et al.  Oxiranyl anion methodology using microflow systems. , 2009, Journal of the American Chemical Society.

[4]  V. Tarasov,et al.  Cyclization of Dicobalthexacarbonyl Complexes of Allyl Propargyl Ethers on the Surface of Chromatography Adsorbents. A Convenient Method for the Preparation of Substituted 3-Oxabicyclo[3.3.0]oct-5-en-7-one and 4-Hydroxymethyl-2-cyclopenten-1-one Derivatives from Common Precursors , 1989 .

[5]  Jun-ichi Yoshida,et al.  Generation and reactions of o-bromophenyllithium without benzyne formation using a microreactor. , 2007, Journal of the American Chemical Society.

[6]  James S. Scott,et al.  The brucine N -oxide promoted asymmetric Pauson-Khand reaction , 2000 .

[7]  Anthony C. Coleman,et al.  Visible light driven room temperature Pauson-Khand reaction. , 2009, Dalton transactions.

[8]  M. I. Foreman,et al.  Organocobalt complexes. Part II. Reaction of acetylenehexacarbonyldicobalt complexes, (R1C2R2)Co2(CO)6, with norbornene and its derivatives , 1973 .

[9]  K. Zeitler,et al.  Application of microflow conditions to visible light photoredox catalysis. , 2012, Organic letters.

[10]  H. Hope,et al.  Synthesis of 11-oxatricyclo[5.3.1.02,6]undecane derivatives via organometallic cyclizations , 1985 .

[11]  J. Yoshida,et al.  Synthesis of functionalized aryl fluorides using organolithium reagents in flow microreactors. , 2013, Chemistry, an Asian journal.

[12]  M. Yamaguchi,et al.  The catalytic Pauson-Khand reaction promoted by a small amount of 1,2-dimethoxyethane or water , 1998 .

[13]  W. Kerr,et al.  Highly Efficient Enantioselective Pauson-Khand Reactions , 1995 .

[14]  T. Shibata Recent Advances in the Catalytic Pauson–Khand-Type Reaction , 2006 .

[15]  P. Evans,et al.  Microwave promoted Pauson–Khand reactions , 2002 .

[16]  M. Yamaguchi,et al.  Rate Enhancement of the Pauson–Khand Reaction by Primary Amines , 1997 .

[17]  N. Schore Transition metal-mediated cycloaddition reactions of alkynes in organic synthesis , 1988 .

[18]  T. Wirth,et al.  Microreactors in organic synthesis and catalysis , 2008 .

[19]  T. Jamison,et al.  Continuous photochemical generation of catalytically active [CpRu]+ complexes from CpRu(η6-C6H6)PF6. , 2011, Organic letters.

[20]  Kay M. Brummond,et al.  Recent Advances in the Pauson–Khand Reaction and Related [2+2+1] Cycloadditions , 2000 .

[21]  William Bauta,et al.  Development of an Improved Process for Doxercalciferol via a Continuous Photochemical Reaction , 2012 .

[22]  P. Pauson,et al.  Organocobalt complexes. Part I. Arene complexes derived from dodecacarbonyltetracobalt , 1973 .

[23]  T. Fukuyama,et al.  Diastereoselective [2 + 2] Photocycloaddition of Chiral Cyclic Enone and Cyclopentene Using a Microflow Reactor System , 2010 .

[24]  Jun-ichi Yoshida,et al.  Green and sustainable chemical synthesis using flow microreactors. , 2011, ChemSusChem.

[25]  James S. Scott,et al.  Elucidating the mechanism of the photochemical Pauson–Khand reaction: matrix photochemistry of phenylacetylenehexacarbonyldicobalt , 1998 .

[26]  Jun-ichi Yoshida,et al.  Flash chemistry: flow microreactor synthesis based on high-resolution reaction time control. , 2010, Chemical record.

[27]  Michael Oelgemöller,et al.  Micro-photochemistry: photochemistry in microstructured reactors. The new photochemistry of the future? , 2008, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[28]  C. Oliver Kappe,et al.  Continuous flow organic synthesis under high-temperature/pressure conditions. , 2010, Chemistry, an Asian journal.

[29]  P. Magnus,et al.  Dicobaltoctacarbonyl-alkyne complexes as intermediates in the synthesis of bicyclo[3.3.0]octenones for the synthesis of coriolin and hirsutic acid , 1985 .

[30]  A. Shashkov,et al.  New route to the synthesis of polycyclic compounds based on a stepwise AdE-reaction of dicobalt hexacarbonyl complexes of conjugated enynes with a subsequent intramolecular Khand-Pauson type reaction. , 1986 .

[31]  Jun-ichi Yoshida,et al.  Cross-coupling in a flow microreactor: space integration of lithiation and Murahashi coupling. , 2010, Angewandte Chemie.

[32]  Kosei Ueno,et al.  Photocyanation of pyrene across an oil/water interface in a polymer microchannel chip. , 2002, Lab on a chip.

[33]  Michael Oelgemöller,et al.  Recent Advances in Microflow Photochemistry , 2011, Molecules.

[34]  V. Tarasov,et al.  Adsorption effects on the efficiency of cobalt-mediated cyclizations of allylpropargyl ethers into derivatives of 3-oxabicyclo[3.3.0]oct-5-en-7-one , 1986 .

[35]  J. Yoshida,et al.  Selective monolithiation of dibromobiaryls using microflow systems. , 2008, Organic letters.

[36]  J. Yoshida,et al.  Asymmetric carbolithiation of conjugated enynes: a flow microreactor enables the use of configurationally unstable intermediates before they epimerize. , 2011, Journal of the American Chemical Society.

[37]  C. Stephenson,et al.  Batch to flow deoxygenation using visible light photoredox catalysis. , 2013, Chemical communications.

[38]  Jun-ichi Yoshida,et al.  Lithiation of 1,2-dichloroethene in flow microreactors: versatile synthesis of alkenes and alkynes by precise residence-time control. , 2012, Angewandte Chemie.

[39]  Rainer E. Martin,et al.  Evaluation of a flow-photochemistry platform for the synthesis of compact modules , 2012 .

[40]  G. Domínguez,et al.  The Pauson-Khand reaction, a powerful synthetic tool for the synthesis of complex molecules. , 2004, Chemical Society reviews.

[41]  S. H. Lee,et al.  A Dramatic Acceleration of the Pauson-Khand Reaction by Trimethylamine N-Oxide1,2 , 1991 .

[42]  Peter H Seeberger,et al.  Continuous-flow synthesis of the anti-malaria drug artemisinin. , 2012, Angewandte Chemie.

[43]  T. Fukuyama,et al.  Quick Execution of [2+2] Type Photochemical Cycloaddition Reaction by Continuous Flow System Using a Glass-made Microreactor , 2004 .

[44]  H. Schmalz,et al.  New Developments in the Pauson-Khand Reaction. , 1998, Angewandte Chemie.

[45]  M. E. Krafft,et al.  When the Pauson-Khand and Pauson-Khand type reactions go awry: a plethora of unexpected results , 2004 .

[46]  K. Nolan,et al.  From conventional to microphotochemistry: photodecarboxylation reactions involving phthalimides. , 2010, Organic letters.

[47]  P. Pauson,et al.  A cobalt induced cleavage reaction and a new series of arenecobalt carbonyl complexes , 1971 .

[48]  J. Tois,et al.  Development of intermolecular additive free Pauson–Khand reactions for estrone E-ring extension using microwaves , 2008 .

[49]  Guangbin Dong,et al.  Tetramethyl thiourea/Co2(CO)8-catalyzed Pauson-Khand reaction under balloon pressure of CO. , 2005, Organic letters.

[50]  Jun-ichi Yoshida,et al.  A flow-microreactor approach to protecting-group-free synthesis using organolithium compounds. , 2011, Nature communications.

[51]  M. Yamaguchi,et al.  The Intra- and Intermolecular Pauson-Khand Reaction Promoted by Alkyl Methyl Sulfides , 1999 .

[52]  T. Jamison,et al.  Peptide fragment coupling using a continuous-flow photochemical rearrangement of nitrones. , 2013, Angewandte Chemie.

[53]  S. Gibson,et al.  The Pauson-Khand reaction: the catalytic age is here! , 2003, Angewandte Chemie.

[54]  S. Gibson,et al.  The intermolecular Pauson-Khand reaction. , 2005, Angewandte Chemie.

[55]  M. E. Krafft,et al.  Effect of coordinating ligands on the Pauson-Khand cycloaddition: trapping of an intermediate , 1993 .

[56]  Klavs F Jensen,et al.  Integrated microreactors for reaction automation: new approaches to reaction development. , 2010, Annual review of analytical chemistry.

[57]  M. Slater,et al.  Stereospecific dicobalt octacarbonyl mediated enyne cyclization for the synthesis of the cytotoxic sesquiterpene (.+-.)-quadrone , 1987 .

[58]  P. Pauson The khand reaction , 1985 .

[59]  Jun-ichi Yoshida,et al.  Photodimerization of Maleic Anhydride in a Microreactor Without Clogging , 2010 .

[60]  P. Pauson,et al.  USES OF COBALT‐CARBONYL ACETYLENE COMPLEXES IN ORGANIC SYNTHESIS * † , 1977 .

[61]  P. Pauson The khand reaction : A convenient and general route to a wide range of cyclopentenone derivatives , 1985 .

[62]  Timothy F. Jamison,et al.  Scalable and Robust Synthesis of CpRu(MeCN)3PF6 via Continuous Flow Photochemistry , 2011, Journal of Flow Chemistry.

[63]  M. Yamaguchi,et al.  Advances in the Pauson-Khand reaction: development of reactive cobalt complexes. , 2001, Chemistry.

[64]  D. Willison,et al.  The effect of ultrasound and of phosphine and phosphine-oxides on the Khand reaction , 1988 .

[65]  P. Magnus,et al.  Origins of 1,2- and 1,3-Stereoselectivity in Dicobaltoctacarbonyl Alkene-alkyne Cyclizations for the Synthesis of Substituted Bicyclo[3.3.0]octenones. , 1985 .

[66]  S. Schreiber,et al.  N-oxide promoted pauson-khand cyclizations at room temperature , 1990 .

[67]  K. Mizuno,et al.  Enhanced Efficiency and Regioselectivity of Intramolecular (2π + 2π) Photocycloaddition of 1-Cyanonaphthalene Derivative Using Microreactors , 2005 .

[68]  B. Pagenkopf,et al.  Photochemical Promotion of the Intramolecular Pauson−Khand Reaction. A New Experimental Protocol for Cobalt-Catalyzed [2 + 2 + 1] Cycloadditions , 1996 .

[69]  Hayato Yoshida,et al.  Continuous-flow synthesis of vitamin D3. , 2010, Chemical communications.

[70]  T. Fukuyama,et al.  Continuous Microflow [2 + 2] Photocycloaddition Reactions Using Energy-saving Compact Light Sources , 2011, Journal of Flow Chemistry.

[71]  Yuan Zhang,et al.  Visible-light photoredox catalysis in flow. , 2012, Angewandte Chemie.

[72]  Toshiaki Murata,et al.  Recent progress on photoreactions in microreactors , 2007 .

[73]  Volker Hessel,et al.  Micro process engineering : a comprehensive handbook , 2009 .

[74]  Michael Oelgemoeller,et al.  Highlights of Photochemical Reactions in Microflow Reactors , 2012 .

[75]  C. Bolm,et al.  Transition Metals for Organic Synthesis , 1998 .

[76]  Michael Oelgemöller,et al.  Parallel microflow photochemistry: process optimization, scale-up, and library synthesis. , 2012, Organic letters.

[77]  A. Vasudevan,et al.  LOPHTOR: a convenient flow-based photochemical reactor , 2010 .

[78]  Hajime Maeda,et al.  Intramolecular Photocycloaddition of 2-(2-Alkenyloxymethyl)naphthalene-1-carbonitriles Using Glass-Made Microreactors , 2007 .

[79]  P. Pauson,et al.  The synthesis of nitrogen heterocycles via the intramolecular Khand reaction: formation of tetra- and hexa-hydrocyclopenta[c]pyrrol-5(1H)-ones and hexahydro-6H-2-pyrindin-6-ones , 1990 .

[80]  W. Kerr,et al.  Preparation of an amine N-oxide on solid phase: an efficient promoter of the Pauson–Khand reaction , 1999 .

[81]  A. Riera,et al.  Toward the understanding of the mechanism and enantioselectivity of the PausonKhand reaction. Theoretical and experimental studies , 2002 .

[82]  Y. Chung Transition metal alkyne complexes: the Pauson–Khand reaction , 1999 .

[83]  S. Laschat,et al.  Regioselectivity, Stereoselectivity and Catalysis in Intermolecular Pauson-Khand Reactions: Teaching an Old Dog New Tricks , 2005 .

[84]  S. Christie,et al.  Cobalt mediated cyclisations , 2000 .

[85]  K. Jensen,et al.  Photochemical reactions and on-line UV detection in microfabricated reactors. , 2001, Lab on a chip.

[86]  M. Fagnoni,et al.  Handbook of synthetic photochemistry , 2009 .

[87]  M. Hudeček,et al.  Promoters for the (alkyne) hexacarbonyldicobalt-based cyclopentenone synthesis , 1993 .

[88]  V. Tarasov,et al.  Methylenecyclopropane as an alkene component in the Khand-Pauson reaction , 1989 .