Spectrophotometric determination of acidity and tautomeric constants and hydrogen bonding strength for a new Schiff base using hard modeling and multivariate curve resolution alternative least squares methods.

[1]  A. Abbaspour,et al.  Spectrophotometric determination of acidity constants by two-rank annihilation factor analysis. , 2008, Analytica chimica acta.

[2]  M. Ganjali,et al.  Ion recognition: application of symmetric and asymmetric schiff bases and their complexes for the fabrication of cationic and anionic membrane sensors to determine ions in real samples. , 2007, Combinatorial chemistry & high throughput screening.

[3]  Y. Issa,et al.  Studies on some salicylaldehyde Schiff base derivatives and their complexes with Cr(III), Mn(II), Fe(III), Ni(II) and Cu(II). , 2007, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[4]  H. Abdollahi,et al.  Tautomerization equilibria in aqueous micellar solutions: a spectrophotometric and factor-analytical study. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[5]  Mari Sithambaram Karthikeyan,et al.  Synthesis and biological activity of Schiff and Mannich bases bearing 2,4-dichloro-5-fluorophenyl moiety. , 2006, Bioorganic & medicinal chemistry.

[6]  A. Afkhami,et al.  Spectrophotometric determination of conditional acidity constant as a function of β-cyclodextrin concentration for some organic acids using rank annihilation factor analysis , 2006 .

[7]  H. Abdollahi,et al.  Local resolution of two-way data from multicomponent equilibria , 2006 .

[8]  A. Filarowski Intramolecular hydrogen bonding in o‐hydroxyaryl Schiff bases , 2005 .

[9]  S. Sridhar,et al.  Synthesis of Schiff bases of 4-(4-aminophenyl)-morpholine as potential antimicrobial agents. , 2005, European journal of medicinal chemistry.

[10]  E. Hadjoudis,et al.  Photochromism and thermochromism of Schiff bases in the solid state: structural aspects. , 2004, Chemical Society reviews.

[11]  Yi-Zeng Liang,et al.  Principles and methodologies in self-modeling curve resolution , 2004 .

[12]  R. Ramesh,et al.  Synthesis, spectra, dioxygen affinity and antifungal activity of Ru(III) Schiff base complexes. , 2003, Journal of inorganic biochemistry.

[13]  P. Gemperline,et al.  Advantages of soft versus hard constraints in self-modeling curve resolution problems. Alternating least squares with penalty functions. , 2003, Analytical chemistry.

[14]  Romà Tauler,et al.  Application of a combination of hard and soft modeling for equilibrium systems to the quantitative analysis of pH-modulated mixture samples. , 2003, Analytical chemistry.

[15]  M. Maeder,et al.  Resolving factor analysis. , 2001, Analytical chemistry.

[16]  N. Galić,et al.  Schiff Bases Derived from Aminopyridines as Spectrofluorimetric Analytical Reagents , 2000 .

[17]  N. Galić,et al.  Tautomeric and protonation equilibria of Schiff bases of salicylaldehyde with aminopyridines , 1997 .

[18]  N. Galić,et al.  Structural characteristics of N,N′-bis(salicylidene)-2,6-pyridinediamine , 1997 .

[19]  R. Tauler Multivariate curve resolution applied to second order data , 1995 .

[20]  R. Kiralj,et al.  The structure and tautomeric properties of 2-(3-pyridylmethyliminomethyl)phenol☆ , 1994 .

[21]  M. Kubista,et al.  Determination of equilibrium constants by chemometric analysis of spectroscopic data , 1993 .

[22]  Anilesh Kumar,et al.  Stability studies in relation to IR data of some schiff base complexes of transition metals and their biological and pharmacological studies , 1988 .

[23]  K. Esbensen,et al.  Principal component analysis , 1987 .

[24]  S. Wold,et al.  Multi‐way principal components‐and PLS‐analysis , 1987 .

[25]  Edmund R. Malinowski,et al.  Factor Analysis in Chemistry , 1980 .

[26]  M. Rubin Chelates in Analytical Chemistry , 1973 .

[27]  A. Mishra,et al.  Synthesis, characterization and biological activity of Schiff base analogues of indole-3-carboxaldehyde. , 2008, European journal of medicinal chemistry.

[28]  J. Bridson,et al.  Dinuclear copper(II) and mixed-valence copper(II)-copper(I) complexes of 34-membered macrocyclic ligands (H2M1, H2M2) capable of forming endogenous phenolate and pyridazino bridges. X-ray crystal structures of the dinuclear copper(II) complexes [Cu2M1][BF4]2.cntdot.H2O and [Cu2M2][BF4]2.cntdot.CH3OH , 1993 .

[29]  R. Bates,et al.  Determination of pH;: Theory and practice , 1964 .