Hierarchy of quantum operations in manipulating coherence and entanglement

Quantum resource theory under different classes of quantum operations advances multiperspective understandings of inherent quantum-mechanical properties, such as quantum coherence and quantum entanglement. We establish hierarchies of different operations for manipulating coherence and entanglement in distributed settings, where at least one of the two spatially separated parties are restricted from generating coherence. In these settings, we introduce new classes of operations including those maximal, i.e., the largest set of resource-non-generating operations, progressing beyond existing studies on incoherent versions of local operations and classical communication and those of separable operations. The maximal operations admit a semidefinite-programming formulation useful for numerical algorithms, whereas the existing operations not. To establish the hierarchies, we prove a sequence of inclusion relations among the operations by clarifying tasks where separation of the operations appears. Meanwhile, we show that no inclusion holds between the maximal operations with one restricted party and those with two restricted parties, discovering that the known inclusions between these two settings for the existing operations do not necessarily generalize. Moreover, in contrast with entanglement theory where separable operations and separability-preserving operations are different, we prove that no such difference arises in our setting. We also demonstrate an asymptotically non-surviving separation of the operations in the hierarchy in terms of performance of the task of assisted coherence distillation, where a separation in a one-shot scenario vanishes in the asymptotic limit. Our results serve as fundamental analytical and numerical tools to investigate interplay between coherence and entanglement under different operations in the resource theory.

[1]  V. Vedral,et al.  Quantum processes which do not use coherence , 2015, 1512.02085.

[2]  A. Winter,et al.  Operational Resource Theory of Coherence. , 2015, Physical review letters.

[3]  M. Plenio,et al.  Quantifying Entanglement , 1997, quant-ph/9702027.

[4]  J. S. Shaari,et al.  Advances in Quantum Cryptography , 2019, 1906.01645.

[5]  Guang-Can Guo,et al.  Quantum coherence and state conversion: theory and experiment , 2019, npj Quantum Information.

[6]  J. Christensen,et al.  A note on extreme positive definite matrices , 1979 .

[7]  Martin B. Plenio,et al.  An introduction to entanglement measures , 2005, Quantum Inf. Comput..

[8]  Xiongfeng Ma,et al.  One-Shot Coherence Dilution. , 2017, Physical review letters.

[9]  G. Adesso,et al.  One-Shot Coherence Distillation. , 2017, Physical review letters.

[10]  Prabir Kumar Dey,et al.  Necessary and sufficient condition for the equivalence of two pure multipartite states under stochastic local incoherent operations and classical communications , 2019, Physical Review A.

[11]  Eric Chitambar,et al.  One-shot assisted concentration of coherence , 2018, Journal of Physics A: Mathematical and Theoretical.

[12]  Runyao Duan,et al.  Irreversibility of Asymptotic Entanglement Manipulation Under Quantum Operations Completely Preserving Positivity of Partial Transpose. , 2016, Physical review letters.

[13]  Eric Chitambar,et al.  Round complexity in the local transformations of quantum and classical states , 2016, Nature Communications.

[14]  Runyao Duan,et al.  Distinguishability of Quantum States by Positive Operator-Valued Measures With Positive Partial Transpose , 2012, IEEE Transactions on Information Theory.

[15]  Mio Murao,et al.  Quantum State Merging for Arbitrarily Small-Dimensional Systems , 2019, IEEE Transactions on Information Theory.

[16]  Rahul Jain,et al.  Quantum state redistribution with local coherence , 2018, 1804.04915.

[17]  Runyao Duan,et al.  Non-Asymptotic Entanglement Distillation , 2017, IEEE Transactions on Information Theory.

[18]  Ludovico Lami,et al.  Nonasymptotic assisted distillation of quantum coherence , 2018, Physical Review A.

[19]  Aram W. Harrow,et al.  Quantum computational supremacy , 2017, Nature.

[20]  John A. Smolin,et al.  Entanglement of assistance and multipartite state distillation , 2005 .

[21]  Andreas Winter,et al.  Interferometric visibility and coherence , 2017, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[22]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[23]  Eric Chitambar,et al.  Relating the Resource Theories of Entanglement and Quantum Coherence. , 2015, Physical review letters.

[24]  John Watrous,et al.  Quantum Computational Complexity , 2008, Encyclopedia of Complexity and Systems Science.

[25]  Xin Wang,et al.  Exact entanglement cost of quantum states and channels under PPT-preserving operations , 2018, ArXiv.

[26]  M. N. Bera,et al.  Entanglement and Coherence in Quantum State Merging. , 2016, Physical review letters.

[27]  Bartosz Regula,et al.  One-shot entanglement distillation beyond local operations and classical communication , 2019, New Journal of Physics.

[28]  J. Åberg Quantifying Superposition , 2006, quant-ph/0612146.

[29]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[30]  Alessandro Cosentino,et al.  Positive-partial-transpose-indistinguishable states via semidefinite programming , 2012, 1205.1031.

[31]  S. Wehner,et al.  Quantum internet: A vision for the road ahead , 2018, Science.

[32]  J. Lofberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).

[33]  H. Yamasaki Entanglement theory in distributed quantum information processing , 2019, 1903.09655.

[34]  Gilad Gour,et al.  Entanglement manipulation beyond local operations and classical communication , 2020 .

[35]  Andreas Winter,et al.  Partial quantum information , 2005, Nature.

[36]  Somshubhro Bandyopadhyay,et al.  Limitations on Separable Measurements by Convex Optimization , 2014, IEEE Transactions on Information Theory.

[37]  M. Horodecki,et al.  Quantum State Merging and Negative Information , 2005, quant-ph/0512247.

[38]  Ludovico Lami,et al.  Completing the Grand Tour of Asymptotic Quantum Coherence Manipulation , 2019, IEEE Transactions on Information Theory.

[39]  Thomas Theurer,et al.  Of Local Operations and Physical Wires , 2018, Physical Review X.

[40]  Guang-Can Guo,et al.  Experimentally obtaining maximal coherence via assisted distillation process , 2017, 1702.06606.

[41]  M. Plenio,et al.  Quantifying coherence. , 2013, Physical review letters.

[42]  Mark M. Wilde,et al.  Cost of quantum entanglement simplified , 2020, Physical review letters.

[43]  Laura Mančinska,et al.  Everything You Always Wanted to Know About LOCC (But Were Afraid to Ask) , 2012, 1210.4583.

[44]  Nilanjana Datta,et al.  One-Shot Rates for Entanglement Manipulation Under Non-entangling Maps , 2009, IEEE Transactions on Information Theory.

[45]  M. Plenio,et al.  Colloquium: quantum coherence as a resource , 2016, 1609.02439.

[46]  Eric Chitambar,et al.  Asymptotic state discrimination and a strict hierarchy in distinguishability norms , 2013, 1311.1536.

[47]  Gerardo Adesso,et al.  Assisted Work Distillation. , 2018, Physical review letters.

[48]  Guang-Can Guo,et al.  Experimental Cyclic Interconversion between Coherence and Quantum Correlations. , 2017, Physical review letters.

[49]  P. Horodecki Separability criterion and inseparable mixed states with positive partial transposition , 1997, quant-ph/9703004.

[50]  Eric M. Rains A semidefinite program for distillable entanglement , 2001, IEEE Trans. Inf. Theory.

[51]  T. Paterek,et al.  The classical-quantum boundary for correlations: Discord and related measures , 2011, 1112.6238.

[52]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[53]  G. Gour,et al.  Comparison of incoherent operations and measures of coherence , 2016 .

[54]  G. Gour,et al.  Quantum resource theories , 2018, Reviews of Modern Physics.

[55]  Runyao Duan,et al.  When Do Local Operations and Classical Communication Suffice for Two-Qubit State Discrimination? , 2013, IEEE Transactions on Information Theory.

[56]  G. Adesso,et al.  Assisted Distillation of Quantum Coherence. , 2015, Physical review letters.

[57]  Mio Murao,et al.  Distributed Encoding and Decoding of Quantum Information over Networks , 2018, Advanced Quantum Technologies.

[58]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[59]  John Watrous,et al.  The Theory of Quantum Information , 2018 .

[60]  M. Horodecki,et al.  The Uniqueness Theorem for Entanglement Measures , 2001, quant-ph/0105017.

[61]  Kohdai Kuroiwa,et al.  General Quantum Resource Theories: Distillation, Formation and Consistent Resource Measures , 2020, Quantum.

[62]  Maciej Lewenstein,et al.  Towards Resource Theory of Coherence in Distributed Scenarios , 2015, 1509.07456.

[63]  Kohdai Kuroiwa,et al.  Asymptotically consistent measures of general quantum resources: Discord, non-Markovianity, and non-Gaussianity , 2021, Physical Review A.

[64]  M. Ying,et al.  Four locally indistinguishable ququad-ququad orthogonal maximally entangled states. , 2011, Physical review letters.

[65]  Stephen P. Boyd,et al.  Conic Optimization via Operator Splitting and Homogeneous Self-Dual Embedding , 2013, Journal of Optimization Theory and Applications.

[66]  Akihito Soeda,et al.  Graph-associated entanglement cost of a multipartite state in exact and finite-block-length approximate constructions , 2017 .

[67]  S. Huelga,et al.  Vibrations, quanta and biology , 2013, 1307.3530.

[68]  Runyao Duan,et al.  Improved semidefinite programming upper bound on distillable entanglement , 2016, 1601.07940.

[69]  Eric Chitambar,et al.  Critical Examination of Incoherent Operations and a Physically Consistent Resource Theory of Quantum Coherence. , 2016, Physical review letters.

[70]  J. Siewert,et al.  Quantifying entanglement resources , 2014, 1402.6710.

[71]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[72]  E. Chitambar Dephasing-covariant operations enable asymptotic reversibility of quantum resources , 2017, 1711.10606.

[73]  Davide Girolami,et al.  Converting Coherence to Quantum Correlations. , 2015, Physical review letters.

[74]  C. H. Bennett,et al.  Quantum nonlocality without entanglement , 1998, quant-ph/9804053.

[75]  Gerardo Adesso,et al.  Assisted concentration of Gaussian resources , 2019 .

[76]  Rahul Jain,et al.  Quantifying Resources in General Resource Theory with Catalysts. , 2018, Physical review letters.

[77]  E. Rains Entanglement purification via separable superoperators , 1997, quant-ph/9707002.

[78]  Paul Skrzypczyk,et al.  The role of quantum information in thermodynamics—a topical review , 2015, 1505.07835.

[79]  M. B. Plenio,et al.  Coherent control of quantum systems as a resource theory , 2015, 1512.07486.

[80]  M. Murao,et al.  Spread quantum information in one-shot quantum state merging , 2019, 1903.03619.

[81]  Min-Hsiu Hsieh,et al.  Inequivalent multipartite coherence classes and two operational coherence monotones , 2018, Physical Review A.