Automatically generated zonal models for building air flow simulation: principles and applications

In our formulation of zonal models for calculating room air temperature and flow distributions, the behavior of a room is represented by the connection of SPARK calculation modules. Modules to describe the building walls and various systems have been created. They form the models library. By assembling the appropriate modules, a zonal model of an entire building can be constructed. A model-generating tool called GenSPARK automates this process. SPARK solves the set of equations resulting from this construction to obtain the air flow and temperature distribution in the building. We describe our formulation of zonal models, show how GenSPARK works and give examples of configurations we are able to analyze.

[1]  Sophie Castanet Contribution à l'étude de la ventilation et de la qualité de l'air intérieur des locaux , 1998 .

[2]  Joseph Andrew Clarke,et al.  A simulation approach to the evaluation of coupled heat and mass transfer in buildings , 1991 .

[3]  G. N. Walton A computer algorithm for predicting infiltration and interroom airflows , 1984 .

[4]  F. C. Winkelmann,et al.  Recent Improvements in Spark: Strong Component Decomposition, Multivalued Objects and Graphical Interface , 1993 .

[5]  Marjorie Musy Génération automatique de modèles zonaux pour l'étude du comportement thermo-aéraulique des bâtiments , 1999 .

[6]  Joseph Andrew Clarke,et al.  An approach to the simulation of coupled heat and mass flows in buildings , 1991 .

[7]  F. C. Winkelmann,et al.  Radiant transfer due to lighting: An example of symbolic model generation for the simulation problem analysis kernel , 1990 .

[8]  F. C. Winkelmann,et al.  Symbolic modeling in building energy simulation , 1994 .

[9]  J.-M. Nataf,et al.  Object-Oriented Programming, Equation-Based Submodels, and System Reduction in SPANK , 1990 .

[10]  Feustel H.E,et al.  The COMIS Infiltration Model , 1989 .

[11]  M. Konopasek,et al.  Constraint and declarative languages for engineering applications: The TK!Solver contribution , 1985, Proceedings of the IEEE.

[12]  Marjorie Musy,et al.  Generation of a zonal model to simulate natural convection in a room with a radiative/convective heater , 2001 .

[13]  Etienne Wurtz,et al.  Two and Three Dimensional Natural and Mixed Convection Simulation using Modular Zonal Models , 1996 .

[14]  Hassan Bouia,et al.  Modélisation simplifiée d'écoulements de convection mixte interne : application aux échanges thermo-aérauliques dans les locaux , 1993 .

[15]  A. T. Howarth,et al.  The prediction of air temperature variations in naturally ventilated rooms with convective heating , 1985 .

[16]  W. P. Cosart,et al.  The two-dimensional turbulent wall-jet , 1961, Journal of Fluid Mechanics.

[17]  Francis Allard,et al.  Phénomènes convectifs intérieurs dans les cellules d'habitation. Approches expérimentales et numériques , 1990 .

[18]  Jeffrey L. Anderson A NETWORK DEFINITION AND SOLUTION OF SIMULATION PROBLEMS , 1987 .

[19]  Etienne Wurtz,et al.  Two- and three-dimensional natural and mixed convection simulation using modular zonal models in buildings , 1999 .