Enhanced thermal contact conductance using carbon nanotube array interfaces

Heat-conduction interfaces that employ carbon nanotube (CNT) arrays have been fabricated and studied experimentally using a reference calorimeter testing rig in a vacuum environment with infrared temperature measurements. Arrays of multiwalled CNTs are grown directly on silicon substrates with microwave plasma-enhanced chemical vapor deposition. Iron and nickel were used as CNT catalysts. CNT arrays grown under different synthesis conditions exhibit different pressure-contact conductance characteristics. The thermal contact resistance of CNTs with a copper interface exhibits promising results with a minimum value of 19.8mm2K/W at a pressure of 0.445MPa

[1]  M. Meyyappan,et al.  Thermal Interface Properties of Cu-filled Vertically Aligned Carbon Nanofiber Arrays , 2004 .

[2]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[3]  Toshiaki Kato,et al.  Magnetron-type radio-frequency plasma control yielding vertically well-aligned carbon nanotube growth , 2003 .

[4]  Shom Ponoth,et al.  Roughness evolution in polyimide films during plasma etching , 2001 .

[5]  K. Goodson,et al.  3-Omega Measurements of Vertically Oriented Carbon Nanotubes on Silicon , 2006 .

[6]  S. Maruyama A MOLECULAR DYNAMICS SIMULATION OF HEAT CONDUCTION OF A FINITE LENGTH SINGLE-WALLED CARBON NANOTUBE , 2003 .

[7]  D. Chung Thermal interface materials , 2001, Electric and Hybrid Vehicle Technology International.

[8]  R. Osiander,et al.  Carbon nanotube coatings for thermal control , 2004, The Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena In Electronic Systems (IEEE Cat. No.04CH37543).

[9]  Otto Zhou,et al.  Plasma-induced alignment of carbon nanotubes , 2000 .

[10]  Kwon,et al.  Unusually high thermal conductivity of carbon nanotubes , 2000, Physical review letters.

[11]  P. McEuen,et al.  Thermal transport measurements of individual multiwalled nanotubes. , 2001, Physical Review Letters.

[12]  L. Fletcher,et al.  Comparison of Effective Thermal Conductivity and Contact Conductance of Fibrous Composites , 1999 .

[13]  Thermal conduction in classical low-dimensional lattices , 2001, cond-mat/0112193.

[14]  Ann M. Anderson,et al.  Experimental methods for engineers: 6th edition, J. P. Holman, McGraw-Hill, New York, NY, 1994, 616 pages, $44.75 , 1994 .

[15]  Jun Xu,et al.  Enhancement of thermal interface materials with carbon nanotube arrays , 2006 .

[16]  Gerald J. Lieberman,et al.  Engineering Statistics, 2nd Edition. , 1973 .

[17]  X. W. Liu,et al.  Well-aligned carbon nitride nanotubes synthesized in anodic alumina by electron cyclotron resonance chemical vapor deposition , 1999 .

[18]  S. Tsai,et al.  Bias-enhanced nucleation and growth of the aligned carbon nanotubes with open ends under microwave plasma synthesis , 1999 .

[19]  Gehan A. J. Amaratunga,et al.  Uniform patterned growth of carbon nanotubes without surface carbon , 2001 .

[20]  Seong Chu Lim,et al.  Effect of surface morphology of Ni thin film on the growth of aligned carbon nanotubes by microwave plasma-enhanced chemical vapor deposition , 2000 .

[21]  E. Grulke,et al.  Anomalous thermal conductivity enhancement in nanotube suspensions , 2001 .

[22]  M. M. Yovanovich,et al.  Thermal resistance of cylinder-flat contacts: Theoretical analysis and experimental verification of a line-contact model , 1985 .

[23]  Zhong Lin Wang,et al.  Thermal and thermoelectric measurements of low dimensional nanostructures , 2003 .

[24]  M. Meyyappan,et al.  Thermal Conductivity of Carbon Nanotube Composite Films , 2004 .

[25]  Scott T. Huxtable,et al.  Interfacial heat flow in carbon nanotube suspensions , 2003, Nature materials.

[26]  O. Zhou,et al.  Deposition of aligned bamboo-like carbon nanotubes via microwave plasma enhanced chemical vapor deposition , 2000 .

[27]  Eric Samson,et al.  Interface Material Selection and a Thermal Management Technique in Second-Generation Platforms Built on Intel Centrino Mobile Technology , 2005 .

[28]  L. B. Ebert Science of fullerenes and carbon nanotubes , 1996 .

[29]  J. P. Holman,et al.  Experimental methods for engineers , 1971 .

[30]  W. Goddard,et al.  Thermal conductivity of carbon nanotubes , 2000 .

[31]  M. Radosavljevic,et al.  Carbon nanotube composites for thermal management , 2002, cond-mat/0205418.

[32]  T. Ichihashi,et al.  Support materials based on converted aluminum films for chemical vapor deposition growth of single-wall carbon nanotubes , 2003 .

[33]  Y. Shiratori,et al.  One-step formation of aligned carbon nanotube field emitters at 400 °C , 2003 .

[34]  D.D.L. Chung,et al.  Sodium silicate based thermal interface material for high thermal contact conductance , 2000 .

[35]  Bower,et al.  Electronic structures of single-walled carbon nanotubes determined by NMR , 2000, Science.

[36]  R. Smalley Crystalline Ropes of Metallic Carbon Nanotubes , 1999 .

[37]  Sungho Jin,et al.  Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition , 2000 .

[38]  Takamichi Hirata,et al.  Single-walled carbon nanotubes produced by plasma-enhanced chemical vapor deposition , 2003 .