Evaluation and Uncertainty Quantification of Prompt Fission Neutron Spectra of Uranium and Plutonium Isotopes

Abstract The prompt fission neutron spectra (PFNS) of the low-incident-energy neutron-induced fission reactions n + 229-238U and n + 235-242Pu have been systematically evaluated using differential experimental data and the Los Alamos model (LA model). Using the first-order, linear Kalman filter, the LA model parameters are constrained using the experimental data and an evaluation of the PFNS and its uncertainties across a suite of isotopes’ results. Correlations between isotopes of each actinide are presented through the model parameter correlations, and the resulting evaluations can be used to fill in inconsistencies within the ENDF/B-VII.1 library where PFNS data are scarce or in need of an update.

[1]  Organisation for Economic Cooperation and Development,et al.  Organisation for economic cooperation and development , 1998 .

[2]  Soo-Youl Oh,et al.  International Evaluation of Neutron Cross Section Standards , 2009 .

[3]  Zoltán Kis,et al.  The 235U(n, f) Prompt Fission Neutron Spectrum at 100 K Input Neutron Energy , 2010 .

[4]  T. Kawano Estimation of energy dependence of the optical potential parameters for 209Bi , 1999 .

[5]  Roberto Capote,et al.  An Investigation of the Performance of the Unified Monte Carlo Method of Neutron Cross Section Data Evaluation , 2008 .

[6]  B. Holmqvist,et al.  An Experimental Study of the Prompt Fission Neutron Spectrum Induced by 0.5-MeV Neutrons Incident on Uranium-235 , 1977 .

[7]  R. Little,et al.  Uncertainty Quantification of Prompt Fission Neutron Spectrum for n(0.5 MeV) + 239Pu , 2010 .

[8]  D. Madland,et al.  Prompt fission neutron spectra and average prompt neutron multiplicities , 1982 .

[9]  V. Weisskopf,et al.  Statistics and Nuclear Reactionsl , 1937 .

[10]  Total prompt energy release in the neutron-induced fission of 235 U, 238 U, and 239 Pu , 2006, nucl-th/0603071.

[11]  Mihai Anitescu,et al.  Nuclear data sensitivity, uncertainty and target accuracy assessment for future nuclear systems , 2006 .

[12]  Makoto Ishikawa,et al.  Recent Application of Nuclear Data to Fast Reactor Core Analysis and Design in Japan , 2005 .

[13]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[14]  Gunter H. R. Kegel,et al.  Prompt fission neutron energy spectra induced by fast neutrons , 1995 .

[15]  M. Coppola,et al.  Investigation of fast neutron interaction with235U , 1972 .

[16]  Shuryak,et al.  Screening of the topological charge in a correlated instanton vacuum. , 1995, Physical review. D, Particles and fields.

[17]  A. Tudora Systematic behaviour of the average parameters required for the Los Alamos model of prompt neutron emission , 2009 .

[18]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[19]  N. M. Larson,et al.  ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data , 2011 .

[20]  Donald L. Smith,et al.  Probability, statistics, and data uncertainties in nuclear science and technology , 1991 .

[21]  S. E. Aumeier,et al.  The simultaneous evaluation of the standards and other cross sections of importance for technology , 1997 .

[22]  T. Ericson,et al.  ON ANGULAR DISTRIBUTIONS IN COMPOUND NUCLEUS PROCESSES , 1958 .

[23]  T. Bayes An essay towards solving a problem in the doctrine of chances , 2003 .

[24]  K. Shibata,et al.  JENDL-4.0: A New Library for Nuclear Science and Engineering , 2011 .

[25]  T. Kawano,et al.  Quantification of Uncertainties for Evaluated Neutron-Induced Reactions on Actinides in the Fast Energy Range , 2011 .