Fusion of Multiple Gridded Biomass Datasets for Generating a Global Forest Aboveground Biomass Map

[1]  K. Taylor Summarizing multiple aspects of model performance in a single diagram , 2001 .

[2]  Youqing Wang,et al.  A novel adaptive-weighted-average framework for blood glucose prediction. , 2013, Diabetes technology & therapeutics.

[3]  M. Herold,et al.  The Importance of Consistent Global Forest Aboveground Biomass Product Validation , 2019, Surveys in Geophysics.

[4]  Shengli Tao,et al.  Evaluation of modeled global vegetation carbon dynamics: Analysis based on global carbon flux and above-ground biomass data , 2017 .

[5]  R. Valentini,et al.  Uncertainty of remotely sensed aboveground biomass over an African tropical forest: Propagating errors from trees to plots to pixels , 2015 .

[6]  R. Knutti,et al.  Skill and independence weighting for multi-model assessments , 2016 .

[7]  Jonas Ardö,et al.  Estimation of high-resolution terrestrial evapotranspiration from Landsat data using a simple Taylor skill fusion method , 2017 .

[8]  Guirui Yu,et al.  How temperature, precipitation and stand age control the biomass carbon density of global mature forests , 2014 .

[9]  Sean C. Thomas,et al.  Above-ground biomass and structure of 260 African tropical forests , 2013, Philosophical Transactions of the Royal Society B: Biological Sciences.

[10]  K. Macdicken,et al.  Global Forest Resources Assessment 2015: What, why and how?☆ , 2015 .

[11]  B. Law,et al.  NACP TERRA-PNW: Forest Plant Traits, NPP, Biomass, and Soil Properties, 1999-2014 , 2015 .

[12]  C. Woodall,et al.  Imputing forest carbon stock estimates from inventory plots to a nationally continuous coverage , 2013, Carbon Balance and Management.

[13]  Guoqing Sun,et al.  Combining satellite lidar, airborne lidar, and ground plots to estimate the amount and distribution of aboveground biomass in the boreal forest of North America1 , 2015 .

[14]  Hong Chi,et al.  Estimation of Forest Aboveground Biomass in Changbai Mountain Region Using ICESat/GLAS and Landsat/TM Data , 2017, Remote. Sens..

[15]  Markus Reichstein,et al.  CO2 balance of boreal, temperate, and tropical forests derived from a global database , 2007 .

[16]  Shunlin Liang,et al.  Integrating MODIS and CYCLOPES Leaf Area Index Products Using Empirical Orthogonal Functions , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[17]  C. Schmullius,et al.  Carbon stock and density of northern boreal and temperate forests , 2014 .

[18]  Michael W. Palace,et al.  Estimating forest structure in a tropical forest using field measurements, a synthetic model and discrete return lidar data , 2015 .

[19]  O. Phillips,et al.  ForestPlots.net: a web application and research tool to manage and analyse tropical forest plot data , 2011 .

[20]  Mathias Schardt,et al.  EU-wide maps of growing stock and above-ground biomass in forests based on remote sensing and field measurements , 2010 .

[21]  Sean C. Thomas,et al.  Diversity and carbon storage across the tropical forest biome , 2017, Scientific Reports.

[22]  Chengquan Huang,et al.  Improving Satellite Estimates of the Fraction of Absorbed Photosynthetically Active Radiation Through Data Integration: Methodology and Validation , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[23]  Laura Duncanson,et al.  CMS: LiDAR-derived Estimates of Aboveground Biomass at Four Forested Sites, USA , 2014 .

[24]  Klaus Scipal,et al.  Ground Data are Essential for Biomass Remote Sensing Missions , 2019, Surveys in Geophysics.

[25]  Yanchen Bo,et al.  Spatiotemporal fusion of multiple‐satellite aerosol optical depth (AOD) products using Bayesian maximum entropy method , 2016 .

[26]  Klaus Scipal,et al.  In Situ Reference Datasets From the TropiSAR and AfriSAR Campaigns in Support of Upcoming Spaceborne Biomass Missions , 2018, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[27]  Klaus Scipal,et al.  Coverage of high biomass forests by the ESA BIOMASS mission under defense restrictions , 2017 .

[28]  Gerard B. M. Heuvelink,et al.  Fusion of pan-tropical biomass maps using weighted averaging and regional calibration data , 2014, Int. J. Appl. Earth Obs. Geoinformation.

[29]  J. Terborgh,et al.  The regional variation of aboveground live biomass in old‐growth Amazonian forests , 2006 .

[30]  Guirui Yu,et al.  Regional drought-induced reduction in the biomass carbon sink of Canada's boreal forests , 2012, Proceedings of the National Academy of Sciences.

[31]  George C. Hurtt,et al.  CMS: LiDAR-derived Aboveground Biomass, Canopy Height and Cover for Maryland, 2011 , 2016 .

[32]  Shengli Tao,et al.  Spatial distribution of forest aboveground biomass in China: Estimation through combination of spaceborne lidar, optical imagery, and forest inventory data , 2015 .

[33]  A. Di Fiore,et al.  Increasing biomass in Amazonian forest plots. , 2004, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[34]  G. Asner,et al.  An above-ground biomass map of African savannahs and woodlands at 25 m resolution derived from ALOS PALSAR , 2018 .

[35]  David B. Lindenmayer,et al.  Re-evaluation of forest biomass carbon stocks and lessons from the world's most carbon-dense forests , 2009, Proceedings of the National Academy of Sciences.

[36]  M. D. Nelson,et al.  Mapping U.S. forest biomass using nationwide forest inventory data and moderate resolution information , 2008 .

[37]  Lu Yang,et al.  A New Method for Generating a Global Forest Aboveground Biomass Map From Multiple High-Level Satellite Products and Ancillary Information , 2020, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[38]  Sean C. Thomas,et al.  Increasing carbon storage in intact African tropical forests , 2009, Nature.

[39]  Jin Liu,et al.  Mapping Global Forest Aboveground Biomass with Spaceborne LiDAR, Optical Imagery, and Forest Inventory Data , 2016, Remote. Sens..

[40]  F. Putz,et al.  Estimating state-wide biomass carbon stocks for a REDD plan in Acre, Brazil , 2011 .

[41]  Shunlin Liang,et al.  Changes in forest biomass and linkage to climate and forest disturbances over Northeastern China , 2014, Global change biology.

[42]  J. Townshend,et al.  A long-term Global LAnd Surface Satellite (GLASS) data-set for environmental studies , 2013 .

[43]  N. Cressie,et al.  Spatial Statistical Data Fusion for Remote Sensing Applications , 2012 .

[44]  Quan Zhang,et al.  Integrating ASTER and GLASS broadband emissivity products using a multi-resolution Kalman filter , 2016, Int. J. Digit. Earth.

[45]  P. Stevenson,et al.  Forest biomass density across large climate gradients in northern South America is related to water availability but not with temperature , 2017, PloS one.

[46]  Guoqing Sun,et al.  Forest Biomass Mapping of Northeastern China Using GLAS and MODIS Data , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[47]  A. Baccini,et al.  Mapping forest canopy height globally with spaceborne lidar , 2011 .

[48]  Lu Yang,et al.  A Review of Regional and Global Gridded Forest Biomass Datasets , 2019, Remote. Sens..

[49]  S. Goetz,et al.  Uncertainty in the spatial distribution of tropical forest biomass: a comparison of pan-tropical maps , 2013, Carbon Balance and Management.

[50]  J. Greenberg,et al.  Quantification of uncertainty in aboveground biomass estimates derived from small-footprint airborne LiDAR , 2018, Remote Sensing of Environment.

[51]  O. Phillips,et al.  The global relationship between forest productivity and biomass , 2007 .

[52]  W. Salas,et al.  Benchmark map of forest carbon stocks in tropical regions across three continents , 2011, Proceedings of the National Academy of Sciences.

[53]  Oliver Cartus,et al.  A National, Detailed Map of Forest Aboveground Carbon Stocks in Mexico , 2014, Remote. Sens..

[54]  Yanchen Bo,et al.  Blending multi-resolution satellite sea surface temperature (SST) products using Bayesian maximum entropy method , 2013 .

[55]  Sergey Zudin,et al.  Global 1-degree Maps of Forest Area, Carbon Stocks, and Biomass, 1950-2010 , 2015 .

[56]  James A. Westfall,et al.  NACP Aboveground Biomass and Carbon Baseline Data, V.2 (NBCD 2000), U.S.A., 2000 , 2013 .

[57]  Qing Xiao,et al.  Heihe Watershed Allied Telemetry Experimental Research (HiWATER): Scientific Objectives and Experimental Design , 2013 .

[58]  Ralph A. Kahn,et al.  A geostatistical data fusion technique for merging remote sensing and ground‐based observations of aerosol optical thickness , 2010 .

[59]  Shunlin Liang,et al.  Fusion of Satellite Land Surface Albedo Products Across Scales Using a Multiresolution Tree Method in the North Central United States , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[60]  C. Justice,et al.  High-Resolution Global Maps of 21st-Century Forest Cover Change , 2013, Science.

[61]  Joachim Denzler,et al.  Deep learning and process understanding for data-driven Earth system science , 2019, Nature.

[62]  Suxian Cai,et al.  Adaptive Linear and Normalized Combination of Radial Basis Function Networks for Function Approximation and Regression , 2014 .

[63]  David Kenfack,et al.  Local spatial structure of forest biomass and its consequences for remote sensing of carbon stocks , 2014 .

[64]  S. Liang,et al.  Methodologies for Integrating Multiple High-Level Remotely Sensed Land Products , 2018 .

[65]  Sorin C. Popescu,et al.  Synergy of ICESat-2 and Landsat for Mapping Forest Aboveground Biomass with Deep Learning , 2019, Remote. Sens..

[66]  M. Steininger,et al.  Global analysis of the protection status of the world’s forests , 2009 .

[67]  J. Terborgh,et al.  Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites , 2014, Global ecology and biogeography : a journal of macroecology.

[68]  Jeffrey G. Masek,et al.  Carbon consequences of forest disturbance and recovery across the conterminous United States , 2012 .

[69]  Matthew F. McCabe,et al.  Recent reversal in loss of global terrestrial biomass , 2015 .

[70]  Stephen E. Fick,et al.  WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas , 2017 .

[71]  Alexandre Bouvet,et al.  Forest biomass retrieval approaches from earth observation in different biomes , 2019, Int. J. Appl. Earth Obs. Geoinformation.

[72]  S. Goetz,et al.  Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps , 2012 .

[73]  Steffen Fritz,et al.  A Global Forest Growing Stock, Biomass and Carbon Map Based on FAO Statistics , 2008 .

[74]  J. Terborgh,et al.  Long-term decline of the Amazon carbon sink , 2015, Nature.

[75]  Heiko Balzter,et al.  Magnitude, spatial distribution and uncertainty of forest biomass stocks in Mexico , 2016 .

[76]  Kristofer Johnson,et al.  CMS: LiDAR-derived Biomass, Canopy Height and Cover, Sonoma County, California, 2013 , 2017 .

[77]  S. P. Abercrombie,et al.  Hierarchical mapping of annual global land cover 2001 to present: The MODIS Collection 6 Land Cover product , 2019, Remote Sensing of Environment.

[78]  Steffen Fritz,et al.  Comparison of Data Fusion Methods Using Crowdsourced Data in Creating a Hybrid Forest Cover Map , 2016, Remote. Sens..

[79]  Forest Structure and Biomass Data, La Selva, Costa Rica: 2006 , 2014 .

[80]  Andrew O. Finley,et al.  CMS: Aboveground Biomass from Penobscot Experimental Forest, Maine, 2012 , 2016 .

[81]  S. Frolking,et al.  Forest disturbance and recovery: A general review in the context of spaceborne remote sensing of impacts on aboveground biomass and canopy structure , 2009 .

[82]  Arief Wijaya,et al.  An integrated pan‐tropical biomass map using multiple reference datasets , 2016, Global change biology.

[83]  Göran Ståhl,et al.  Forest biomass estimation over three distinct forest types using TanDEM-X InSAR data and simulated GEDI lidar data , 2019, Remote Sensing of Environment.

[84]  Steffen Fritz,et al.  Development of a global hybrid forest mask through the synergy of remote sensing, crowdsourcing and FAO statistics , 2015 .

[85]  Jindi Wang,et al.  Use of General Regression Neural Networks for Generating the GLASS Leaf Area Index Product From Time-Series MODIS Surface Reflectance , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[86]  F. Lu,et al.  Biomass and its allocation of Chinese forest ecosystems , 2014 .