Obtaining extra coding gain for short codes by block Markov superposition transmission
暂无分享,去创建一个
Xiao Ma | Kechao Huang | Chulong Liang | Qiutao Zhuang | C. Liang | Xiao Ma | Kechao Huang | Qiutao Zhuang
[1] D.J.C. MacKay,et al. Good error-correcting codes based on very sparse matrices , 1997, Proceedings of IEEE International Symposium on Information Theory.
[2] N. Phamdo,et al. Zigzag codes and concatenated zigzag codes , 1999, 1999 Information Theory and Networking Workshop (Cat. No.99EX371).
[3] John Cocke,et al. Optimal decoding of linear codes for minimizing symbol error rate (Corresp.) , 1974, IEEE Trans. Inf. Theory.
[4] G. Forney,et al. Codes on graphs: normal realizations , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).
[5] Ali Emre Pusane,et al. Deriving Good LDPC Convolutional Codes from LDPC Block Codes , 2010, IEEE Transactions on Information Theory.
[6] G. David Forney,et al. Concatenated codes , 2009, Scholarpedia.
[7] Robert G. Gallager,et al. Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.
[8] A. Glavieux,et al. Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1 , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.
[9] Rüdiger L. Urbanke,et al. Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.
[10] Cyril Leung,et al. An achievable rate region for the multiple-access channel with feedback , 1981, IEEE Trans. Inf. Theory.
[11] S. Dolinar,et al. Weight distributions for turbo codes using random and nonrandom permutations , 1995 .
[12] Shu Lin,et al. Low-density parity-check codes based on finite geometries: A rediscovery and new results , 2001, IEEE Trans. Inf. Theory.
[13] Abbas El Gamal,et al. Capacity theorems for the relay channel , 1979, IEEE Trans. Inf. Theory.
[14] Carl-Erik W. Sundberg,et al. List Viterbi decoding algorithms with applications , 1994, IEEE Trans. Commun..
[15] Rudiger Urbanke,et al. Threshold saturation via spatial coupling: Why convolutional LDPC ensembles perform so well over the BEC , 2010, ISIT.
[16] Frans M. J. Willems,et al. The discrete memoryless multiple-access channel with cribbing encoders , 1985, IEEE Trans. Inf. Theory.
[17] Sergio Benedetto,et al. Unveiling turbo codes: some results on parallel concatenated coding schemes , 1996, IEEE Trans. Inf. Theory.
[18] Kamil Sh. Zigangirov,et al. Time-varying periodic convolutional codes with low-density parity-check matrix , 1999, IEEE Trans. Inf. Theory.
[19] Dariush Divsalar,et al. Accumulate repeat accumulate codes , 2004, ISIT.
[20] Shu Lin,et al. Construction of Quasi-Cyclic LDPC Codes for AWGN and Binary Erasure Channels: A Finite Field Approach , 2007, IEEE Transactions on Information Theory.
[21] Baoming Bai,et al. Near Shannon limit precoded concatenated zigzag codes , 2012, 2012 7th International Symposium on Turbo Codes and Iterative Information Processing (ISTC).
[22] F. MacWilliams,et al. The Theory of Error-Correcting Codes , 1977 .
[23] Rolf Johannesson,et al. Fundamentals of Convolutional Coding , 1999 .
[24] Tetsunao Matsuta,et al. 国際会議開催報告:2013 IEEE International Symposium on Information Theory , 2013 .
[25] Xiao Ma,et al. New Techniques for Upper-Bounding the ML Decoding Performance of Binary Linear Codes , 2011, IEEE Transactions on Communications.
[26] Xiao Ma,et al. Path partitions and forward-only trellis algorithms , 2003, IEEE Trans. Inf. Theory.
[27] F. Pollara,et al. Serial concatenation of interleaved codes: performance analysis, design and iterative decoding , 1996, Proceedings of IEEE International Symposium on Information Theory.
[28] Peter Elias,et al. Error-free Coding , 1954, Trans. IRE Prof. Group Inf. Theory.