Obtaining extra coding gain for short codes by block Markov superposition transmission

In this paper, we present a new approach, called block Markov superposition transmission (BMST), to construct from short codes a class of convolutional codes with large constraint length. The BMST is very similar to superposition block Markov encoding (SBME), which has been widely used to prove multiuser coding theorems. We also present an iterative sliding-window decoding algorithm for the proposed transmission scheme. The extra coding gain obtained by BMST can be bounded in terms of the Markov order and with the help of the input-output weight enumerating function (IOWEF) of the BMST system, which can be computed from that of the short code by performing a trellis-based algorithm. Numerical results verify our analysis and show that an extra coding gain of 6.4 dB at bit-error rate (BER) 10-5 can be obtained by BMST of the [7, 4] Hamming code.

[1]  D.J.C. MacKay,et al.  Good error-correcting codes based on very sparse matrices , 1997, Proceedings of IEEE International Symposium on Information Theory.

[2]  N. Phamdo,et al.  Zigzag codes and concatenated zigzag codes , 1999, 1999 Information Theory and Networking Workshop (Cat. No.99EX371).

[3]  John Cocke,et al.  Optimal decoding of linear codes for minimizing symbol error rate (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[4]  G. Forney,et al.  Codes on graphs: normal realizations , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).

[5]  Ali Emre Pusane,et al.  Deriving Good LDPC Convolutional Codes from LDPC Block Codes , 2010, IEEE Transactions on Information Theory.

[6]  G. David Forney,et al.  Concatenated codes , 2009, Scholarpedia.

[7]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[8]  A. Glavieux,et al.  Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1 , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.

[9]  Rüdiger L. Urbanke,et al.  Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[10]  Cyril Leung,et al.  An achievable rate region for the multiple-access channel with feedback , 1981, IEEE Trans. Inf. Theory.

[11]  S. Dolinar,et al.  Weight distributions for turbo codes using random and nonrandom permutations , 1995 .

[12]  Shu Lin,et al.  Low-density parity-check codes based on finite geometries: A rediscovery and new results , 2001, IEEE Trans. Inf. Theory.

[13]  Abbas El Gamal,et al.  Capacity theorems for the relay channel , 1979, IEEE Trans. Inf. Theory.

[14]  Carl-Erik W. Sundberg,et al.  List Viterbi decoding algorithms with applications , 1994, IEEE Trans. Commun..

[15]  Rudiger Urbanke,et al.  Threshold saturation via spatial coupling: Why convolutional LDPC ensembles perform so well over the BEC , 2010, ISIT.

[16]  Frans M. J. Willems,et al.  The discrete memoryless multiple-access channel with cribbing encoders , 1985, IEEE Trans. Inf. Theory.

[17]  Sergio Benedetto,et al.  Unveiling turbo codes: some results on parallel concatenated coding schemes , 1996, IEEE Trans. Inf. Theory.

[18]  Kamil Sh. Zigangirov,et al.  Time-varying periodic convolutional codes with low-density parity-check matrix , 1999, IEEE Trans. Inf. Theory.

[19]  Dariush Divsalar,et al.  Accumulate repeat accumulate codes , 2004, ISIT.

[20]  Shu Lin,et al.  Construction of Quasi-Cyclic LDPC Codes for AWGN and Binary Erasure Channels: A Finite Field Approach , 2007, IEEE Transactions on Information Theory.

[21]  Baoming Bai,et al.  Near Shannon limit precoded concatenated zigzag codes , 2012, 2012 7th International Symposium on Turbo Codes and Iterative Information Processing (ISTC).

[22]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[23]  Rolf Johannesson,et al.  Fundamentals of Convolutional Coding , 1999 .

[24]  Tetsunao Matsuta,et al.  国際会議開催報告:2013 IEEE International Symposium on Information Theory , 2013 .

[25]  Xiao Ma,et al.  New Techniques for Upper-Bounding the ML Decoding Performance of Binary Linear Codes , 2011, IEEE Transactions on Communications.

[26]  Xiao Ma,et al.  Path partitions and forward-only trellis algorithms , 2003, IEEE Trans. Inf. Theory.

[27]  F. Pollara,et al.  Serial concatenation of interleaved codes: performance analysis, design and iterative decoding , 1996, Proceedings of IEEE International Symposium on Information Theory.

[28]  Peter Elias,et al.  Error-free Coding , 1954, Trans. IRE Prof. Group Inf. Theory.