A large synthetic peptide and phosphopeptide reference library for mass spectrometry–based proteomics

[1]  叶明亮,et al.  Robust phosphoproteome enrichment using monodisperse microsphere–based immobilized titanium (IV) ion affinity chromatography , 2013 .

[2]  Joseph M. Foster,et al.  Chromatographic retention time prediction for posttranslationally modified peptides , 2012, Proteomics.

[3]  K. Clauser,et al.  Modification Site Localization Scoring: Strategies and Performance , 2012, Molecular & Cellular Proteomics.

[4]  T. Köcher,et al.  Universal and confident phosphorylation site localization using phosphoRS. , 2011, Journal of proteome research.

[5]  Edward L. Huttlin,et al.  Evaluation of HCD- and CID-type Fragmentation Within Their Respective Detection Platforms For Murine Phosphoproteomics* , 2011, Molecular & Cellular Proteomics.

[6]  Natalie I. Tasman,et al.  iProphet: Multi-level Integrative Analysis of Shotgun Proteomic Data Improves Peptide and Protein Identification Rates and Error Estimates* , 2011, Molecular & Cellular Proteomics.

[7]  Albert J R Heck,et al.  Enhancing the Identification of Phosphopeptides from Putative Basophilic Kinase Substrates Using Ti (IV) Based IMAC Enrichment* , 2011, Molecular & Cellular Proteomics.

[8]  Pavel A. Pevzner,et al.  Spectral Archives: Extending Spectral Libraries to Analyze both Identified and Unidentified Spectra , 2011, Nature Methods.

[9]  Jesper V Olsen,et al.  Pinpointing phosphorylation sites: Quantitative filtering and a novel site-specific x-ion fragment. , 2011, Journal of proteome research.

[10]  Peter R Baker,et al.  Modification Site Localization Scoring Integrated into a Search Engine* , 2011, Molecular & Cellular Proteomics.

[11]  S. Mohammed,et al.  Improved peptide identification by targeted fragmentation using CID, HCD and ETD on an LTQ-Orbitrap Velos. , 2011, Journal of proteome research.

[12]  Mark W. Towers,et al.  Phosphorylation site localization in peptides by MALDI MS/MS and the Mascot Delta Score , 2011, Analytical and Bioanalytical Chemistry.

[13]  B. Kuster,et al.  Confident Phosphorylation Site Localization Using the Mascot Delta Score , 2010, Molecular & Cellular Proteomics.

[14]  M. Mann,et al.  Feasibility of large-scale phosphoproteomics with higher energy collisional dissociation fragmentation. , 2010, Journal of proteome research.

[15]  Lukas Käll,et al.  Training, selection, and robust calibration of retention time models for targeted proteomics. , 2010, Journal of proteome research.

[16]  Predrag Radivojac,et al.  Combinatorial libraries of synthetic peptides as a model for shotgun proteomics. , 2010, Analytical chemistry.

[17]  B. Kuster,et al.  Proteomics: a pragmatic perspective , 2010, Nature Biotechnology.

[18]  S. Mohammed,et al.  Phosphopeptide Fragmentation and Analysis by Mass Spectrometry , 2010 .

[19]  S. Brunak,et al.  Quantitative Phosphoproteomics Reveals Widespread Full Phosphorylation Site Occupancy During Mitosis , 2010, Science Signaling.

[20]  V. Spicer,et al.  Peptide retention standards and hydrophobicity indexes in reversed-phase high-performance liquid chromatography of peptides. , 2009, Analytical chemistry.

[21]  S. Lemeer,et al.  The phosphoproteomics data explosion. , 2009, Current opinion in chemical biology.

[22]  Natasa Zivic,et al.  Strategies and performances of Soft Input Decryption , 2009, ArXiv.

[23]  Yingming Zhao,et al.  Mascot-derived false positive peptide identifications revealed by manual analysis of tandem mass spectra. , 2009, Journal of proteome research.

[24]  Florian Gnad,et al.  Large-scale Proteomics Analysis of the Human Kinome , 2009, Molecular & Cellular Proteomics.

[25]  Martin Zeller,et al.  SLoMo: automated site localization of modifications from ETD/ECD mass spectra. , 2009, Journal of proteome research.

[26]  M. Gorenstein,et al.  The detection, correlation, and comparison of peptide precursor and product ions from data independent LC‐MS with data dependant LC‐MS/MS , 2009, Proteomics.

[27]  M. Larsen,et al.  Analytical strategies for phosphoproteomics , 2009, Expert review of neurotherapeutics.

[28]  J. Thomson,et al.  Human embryonic stem cell phosphoproteome revealed by electron transfer dissociation tandem mass spectrometry , 2009, Proceedings of the National Academy of Sciences.

[29]  G. McAlister,et al.  Decision tree–driven tandem mass spectrometry for shotgun proteomics , 2008, Nature Methods.

[30]  M. Mann,et al.  Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle. , 2008, Molecular cell.

[31]  Ruedi Aebersold,et al.  The standard protein mix database: a diverse data set to assist in the production of improved Peptide and protein identification software tools. , 2008, Journal of proteome research.

[32]  George C Tseng,et al.  A data-mining scheme for identifying peptide structural motifs responsible for different MS/MS fragmentation intensity patterns. , 2008, Journal of proteome research.

[33]  Laura A. Sullivan,et al.  Global Survey of Phosphotyrosine Signaling Identifies Oncogenic Kinases in Lung Cancer , 2007, Cell.

[34]  Alexey I Nesvizhskii,et al.  Analysis and validation of proteomic data generated by tandem mass spectrometry , 2007, Nature Methods.

[35]  Steven P Gygi,et al.  Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry , 2007, Nature Methods.

[36]  Daniel B. Martin,et al.  Computational prediction of proteotypic peptides for quantitative proteomics , 2007, Nature Biotechnology.

[37]  M. Mann,et al.  Global, In Vivo, and Site-Specific Phosphorylation Dynamics in Signaling Networks , 2006, Cell.

[38]  O. Krokhin,et al.  Sequence-specific retention calculator. Algorithm for peptide retention prediction in ion-pair RP-HPLC: application to 300- and 100-A pore size C18 sorbents. , 2006, Analytical chemistry.

[39]  Steven P Gygi,et al.  A probability-based approach for high-throughput protein phosphorylation analysis and site localization , 2006, Nature Biotechnology.

[40]  Hanno Steen,et al.  Phosphorylation Analysis by Mass Spectrometry , 2006, Molecular & Cellular Proteomics.

[41]  Gilbert S Omenn,et al.  An evaluation, comparison, and accurate benchmarking of several publicly available MS/MS search algorithms: Sensitivity and specificity analysis , 2005, Proteomics.

[42]  Paul A Rudnick,et al.  Large scale analysis of MASCOT results using a Mass Accuracy-based THreshold (MATH) effectively improves data interpretation. , 2005, Journal of proteome research.

[43]  Yingming Zhao,et al.  Integrated approach for manual evaluation of peptides identified by searching protein sequence databases with tandem mass spectra. , 2005, Journal of proteome research.

[44]  R. Aebersold,et al.  A statistical model for identifying proteins by tandem mass spectrometry. , 2003, Analytical chemistry.

[45]  Alexey I Nesvizhskii,et al.  Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. , 2002, Analytical chemistry.

[46]  A. Nesvizhskii,et al.  Experimental protein mixture for validating tandem mass spectral analysis. , 2002, Omics : a journal of integrative biology.

[47]  D. Clemmer,et al.  Mobility labeling for parallel CID of ion mixtures. , 2000, Analytical chemistry.

[48]  Richard D. Smith,et al.  Utility of accurate mass tags for proteome-wide protein identification. , 2000, Analytical chemistry.

[49]  Geert Jacobs A Pragmatic Perspective on Press Releases , 1999 .

[50]  R. Doolittle,et al.  A simple method for displaying the hydropathic character of a protein. , 1982, Journal of molecular biology.