Compact Imbeddings in Electromagnetism with Interfaces between Classical Materials and Metamaterials

In a metamaterial, the electric permittivity and/or the magnetic permeability can be negative in given frequency ranges. We investigate the solution of the time-harmonic Maxwell equations in a comp...

[1]  Christine Bernardi,et al.  Compatibilité de traces aux arêtes et coins d'un polyèdre , 2000 .

[2]  Lucas Chesnel,et al.  T-COERCIVITY FOR SCALAR INTERFACE PROBLEMS BETWEEN DIELECTRICS AND METAMATERIALS , 2011 .

[3]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[4]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[5]  M. Z. Solomyak,et al.  Maxwell operator in regions with nonsmooth boundaries , 1987 .

[6]  M. Dauge Elliptic boundary value problems on corner domains , 1988 .

[7]  Bernard D. Casse,et al.  ARTIFICIAL ENGINEERING AND CHARACTERIZATION OF MICRO- AND NANOSCALE ELECTROMAGNETIC METAMATERIALS FOR THE THz SPECTRAL RANGE , 2008 .

[8]  Ronald H. W. Hoppe,et al.  Finite element methods for Maxwell's equations , 2005, Math. Comput..

[9]  P. Werner,et al.  A local compactness theorem for Maxwell's equations , 1980 .

[10]  E. N. Dancer ELLIPTIC PROBLEMS IN DOMAINS WITH PIECEWISE SMOOTH BOUNDARIES (de Gruyter Expositions in Mathematics 13) , 1996 .

[11]  K. Ramdani,et al.  Analyse spectrale et singularits d'un problme de transmission non coercif , 1999 .

[12]  Martin Costabel,et al.  Weighted regularization of Maxwell equations in polyhedral domains , 2002, Numerische Mathematik.

[13]  P. Grisvard Singularities in Boundary Value Problems , 1992 .

[14]  Vinet,et al.  Guided optical waves in planar heterostructures with negative dielectric constant. , 1991, Physical review. B, Condensed matter.

[15]  V. A. Kondrat'ev,et al.  Boundary problems for elliptic equations in domains with conical or angular points , 1967 .

[16]  M. Costabel,et al.  Singularities of Maxwell interface problems , 1999 .

[17]  M. Sh. Birman,et al.  Construction in a piecewise smooth domain of a function of the class H2 from the value of the conormal derivative , 1990 .

[18]  M. Dauge Elliptic Boundary Value Problems on Corner Domains: Smoothness and Asymptotics of Solutions , 1988 .

[19]  V. Girault,et al.  Vector potentials in three-dimensional non-smooth domains , 1998 .

[20]  Sia Nemat-Nasser,et al.  Fabrication and characterization of a negative-refractive-index composite metamaterial , 2004 .

[21]  Patrick Ciarlet,et al.  A NEW COMPACTNESS RESULT FOR ELECTROMAGNETIC WAVES. APPLICATION TO THE TRANSMISSION PROBLEM BETWEEN DIELECTRICS AND METAMATERIALS , 2008 .

[22]  M. Birman,et al.  L2-Theory of the Maxwell operator in arbitrary domains , 1987 .

[23]  Patrick Ciarlet,et al.  Time harmonic wave diffraction problems in materials with sign-shifting coefficients , 2010, J. Comput. Appl. Math..

[24]  Y. Maday,et al.  Méthodes Spectrales et des Eléments Spectraux , 1993 .

[25]  J. Roßmann,et al.  Elliptic Boundary Value Problems in Domains with Point Singularities , 2002 .

[26]  Willie J Padilla,et al.  Composite medium with simultaneously negative permeability and permittivity , 2000, Physical review letters.

[27]  B. Plamenevskii,et al.  Elliptic Problems in Domains with Piecewise Smooth Boundaries , 1994 .

[28]  Gerd Grubb,et al.  PROBLÉMES AUX LIMITES NON HOMOGÉNES ET APPLICATIONS , 1969 .

[29]  Monique Dauge,et al.  Non-coercive transmission problems in polygonal domains. -- Problèmes de transmission non coercifs dans des polygones , 2011, 1102.1409.