Budget constrained bidding in keyword auctions and online knapsack problems

We consider the budget-constrained bidding optimization problem for sponsored search auctions, and model it as an online (multiple-choice) knapsack problem. We design both deterministic and randomized algorithms for the online (multiple-choice) knapsack problems achieving a provably optimal competitive ratio. This translates back to fully automatic bidding strategies maximizing either profit or revenue for the budget-constrained advertiser. Our bidding strategy for revenue maximization is oblivious (i.e., without knowledge) of other bidders' prices and/or click-through-rates for those positions. We evaluate our bidding algorithms using both synthetic data and real bidding data gathered manually, and also discuss a sniping heuristic that strictly improves bidding performance. With sniping and parameter tuning enabled, our bidding algorithms can achieve a performance ratio above 90% against the optimum by the omniscient bidder.

[1]  Joseph Naor,et al.  Online Primal-Dual Algorithms for Covering and Packing Problems , 2005, ESA.

[2]  Aranyak Mehta,et al.  AdWords and Generalized On-line Matching , 2005, FOCS.

[3]  Nicole Immorlica,et al.  Dynamics of bid optimization in online advertisement auctions , 2007, WWW '07.

[4]  Jon Feldman,et al.  Budget optimization in search-based advertising auctions , 2006, EC '07.

[5]  Anton J. Kleywegt,et al.  The Dynamic and Stochastic Knapsack Problem , 1998, Oper. Res..

[6]  David P. Williamson,et al.  An adaptive algorithm for selecting profitable keywords for search-based advertising services , 2006, EC '06.

[7]  Yossi Azar,et al.  Throughput-competitive on-line routing , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[8]  Zoë Abrams,et al.  Revenue maximization when bidders have budgets , 2006, SODA '06.

[9]  Robert D. Kleinberg A multiple-choice secretary algorithm with applications to online auctions , 2005, SODA '05.

[10]  Brendan Kitts,et al.  Optimal Bidding on Keyword Auctions , 2004, Electron. Mark..

[11]  Carlo Vercellis,et al.  Stochastic on-line knapsack problems , 1995, Math. Program..

[12]  J. Papastavrou,et al.  The Dynamic and Stochastic Knapsack Problem with Deadlines , 1996 .

[13]  John Noga,et al.  An online partially fractional knapsack problem , 2005, 8th International Symposium on Parallel Architectures,Algorithms and Networks (ISPAN'05).

[14]  Yunhong Zhou,et al.  Vindictive bidding in keyword auctions , 2007, ICEC.

[15]  George S. Lueker,et al.  Average-case analysis of off-line and on-line knapsack problems , 1995, SODA '95.

[16]  Aranyak Mehta,et al.  AdWords and generalized on-line matching , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[17]  Claire Mathieu,et al.  Greedy bidding strategies for keyword auctions , 2007, EC '07.

[18]  Ashish Goel,et al.  Truthful auctions for pricing search keywords , 2006, EC '06.

[19]  Joseph Naor,et al.  Improved bounds for online routing and packing via a primal-dual approach , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[20]  Benjamin Edelman,et al.  Strategic bidder behavior in sponsored search auctions , 2007, Decis. Support Syst..

[21]  Joseph Naor,et al.  Online Primal-Dual Algorithms for Maximizing Ad-Auctions Revenue , 2007, ESA.

[22]  Nicole Immorlica,et al.  Multi-unit auctions with budget-constrained bidders , 2005, EC '05.

[23]  Kazuo Iwama,et al.  Removable Online Knapsack Problems , 2002, ICALP.

[24]  John Tomlin,et al.  Optimal delivery of sponsored search advertisements subject to budget constraints , 2007, EC '07.

[25]  Sébastien Lahaie,et al.  An analysis of alternative slot auction designs for sponsored search , 2006, EC '06.

[26]  Andrew Chi-Chih Yao,et al.  Probabilistic computations: Toward a unified measure of complexity , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).