Developments in Extended Finite Element Methods for Extraction of Strain Energy Release Rates and Computational Nanomechanics for SWCNT Aggregates

Developments in Extended Finite Element Methods for Extraction of Strain Energy Release Rates and Computational Nanomechanics for SWCNT Aggregates

[1]  Haim Waisman,et al.  An analytical stiffness derivative extended finite element technique for extraction of crack tip Strain Energy Release Rates , 2010 .

[2]  T. Belytschko,et al.  MODELING HOLES AND INCLUSIONS BY LEVEL SETS IN THE EXTENDED FINITE-ELEMENT METHOD , 2001 .

[3]  Martin,et al.  Quantum-mechanical theory of stress and force. , 1985, Physical review. B, Condensed matter.

[4]  T. K. Hellen On the method of virtual crack extensions , 1975 .

[5]  Ivo Babuška,et al.  Generalized finite element methods for three-dimensional structural mechanics problems , 2000 .

[6]  M. Kanninen,et al.  A finite element calculation of stress intensity factors by a modified crack closure integral , 1977 .

[7]  D. M. Parks A stiffness derivative finite element technique for determination of crack tip stress intensity factors , 1974 .

[8]  A. To,et al.  A stochastic algorithm for modeling heat welded random carbon nanotube network , 2013 .

[9]  Mary C. Boyce,et al.  Mechanics of deformation of single- and multi-wall carbon nanotubes , 2004 .

[10]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[11]  S. K. Maiti,et al.  Comparison of the criteria for mixed mode brittle fracture based on the preinstability stress-strain field , 1984 .

[12]  M. German,et al.  Crack extension modeling with singular quadratic isoparametric elements , 1976 .

[13]  Yonggang Huang,et al.  Nanomechanics Modeling and Simulation of Carbon Nanotubes , 2008 .

[14]  G. Meyerhoff Handbuch der Physik , 1965 .

[15]  L. Schadler,et al.  Aggregation behavior of single-walled carbon nanotubes in dilute aqueous suspension. , 2004, Journal of colloid and interface science.

[16]  Mechanical properties of carbon nanotube networks by molecular mechanics and impact molecular dynamics calculations , 2007 .

[17]  T. Ebbesen,et al.  Exceptionally high Young's modulus observed for individual carbon nanotubes , 1996, Nature.

[18]  Leslie Banks-Sills,et al.  Comparison of methods for calculating stress intensity factors with quarter-point elements , 1986 .

[19]  Mark R. Wilson,et al.  Determination of order parameters in realistic atom-based models of liquid crystal systems , 1996 .

[20]  Huajian Gao,et al.  Deformation Mechanisms of Very Long Single-Wall Carbon Nanotubes Subject to Compressive Loading , 2004 .

[21]  J. Coleman,et al.  Small but strong: A review of the mechanical properties of carbon nanotube–polymer composites , 2006 .

[22]  J. Rice A path-independent integral and the approximate analysis of strain , 1968 .

[23]  T. Belytschko,et al.  The extended/generalized finite element method: An overview of the method and its applications , 2010 .

[24]  G. Odegarda,et al.  The stress – strain behavior of polymer – nanotube composites from molecular dynamics simulation , 2003 .

[25]  M. Williams,et al.  On the Stress Distribution at the Base of a Stationary Crack , 1956 .

[26]  K. N. Shivakumar,et al.  A virtual crack-closure technique for calculating stress intensity factors for cracked three dimensional bodies , 1988, International Journal of Fracture.

[27]  A. Rinzler,et al.  An Integrated Logic Circuit Assembled on a Single Carbon Nanotube , 2006, Science.

[28]  M. Eslami,et al.  Higher order tip enrichment of eXtended Finite Element Method in thermoelasticity , 2010 .

[29]  T. Belytschko,et al.  Non‐planar 3D crack growth by the extended finite element and level sets—Part II: Level set update , 2002 .

[30]  H. Wagner,et al.  Buckling and Collapse of Embedded Carbon Nanotubes , 1998 .

[31]  R. Rafiee,et al.  A review of the mechanical properties of isolated carbon nanotubes and carbon nanotube composites , 2010 .

[32]  S. Chan,et al.  On the Finite Element Method in Linear Fracture Mechanics , 1970 .

[33]  A. Atala,et al.  Carbon nanotube applications for tissue engineering. , 2007, Biomaterials.

[34]  Hongjie Dai,et al.  Carbon nanotubes: opportunities and challenges , 2002 .

[35]  Ronald Krueger,et al.  The Virtual Crack Closure Technique : History , Approach and Applications , 2002 .

[36]  Bhushan Lal Karihaloo,et al.  XFEM for direct evaluation of mixed mode SIFs in homogeneous and bi‐materials , 2004 .

[37]  R. Ruoff,et al.  Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load , 2000, Science.

[38]  Donald W. Brenner,et al.  A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons , 2002 .

[39]  David B. Kirk,et al.  Graphics Gems III , 1992 .

[40]  T. Belytschko,et al.  Atomistic simulations of nanotube fracture , 2002 .

[41]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .

[42]  Dong Qian,et al.  Mechanical properties of carbon nanotubes: theoretical predictions and experimental measurements , 2003 .

[43]  I. Harari,et al.  A direct analytical method to extract mixed‐mode components of strain energy release rates from Irwin's integral using extended finite element method , 2013 .

[44]  V. Vítek,et al.  Atomic Level Stresses in Solids and Liquids , 1987 .

[45]  T. Liszka,et al.  A generalized finite element method for the simulation of three-dimensional dynamic crack propagation , 2001 .

[46]  Hussain,et al.  Strain Energy Release Rate for a Crack Under Combined Mode I and Mode II , 1974 .

[47]  R. Gracie,et al.  Cohesive and non‐cohesive fracture by higher‐order enrichment of XFEM , 2012 .

[48]  M. De Handbuch der Physik , 1957 .

[49]  H. T. Corten,et al.  A mixed-mode crack analysis of rectilinear anisotropic solids using conservation laws of elasticity , 1980 .

[50]  D. Brenner,et al.  Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. , 1990, Physical review. B, Condensed matter.

[51]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[52]  H. Waisman,et al.  Mechanics of SWCNT Aggregates Studied by Incremental Constrained Minimization , 2012 .

[53]  B. Moran,et al.  A general treatment of crack tip contour integrals , 1987 .

[54]  Stéphane Roux,et al.  Hybrid analytical and extended finite element method (HAX‐FEM): A new enrichment procedure for cracked solids , 2010 .

[55]  R. Barsoum On the use of isoparametric finite elements in linear fracture mechanics , 1976 .

[56]  S. Fawaz,et al.  Application of the virtual crack closure technique to calculate stress intensity factors for through cracks with an oblique elliptical crack front , 1998 .

[57]  Bingqing Wei,et al.  Miniaturized Gas Ionization Sensors Using Carbon Nanotubes. , 2003 .

[58]  K. M. Liew,et al.  On the study of elastic and plastic properties of multi-walled carbon nanotubes under axial tension using molecular dynamics simulation , 2004 .

[59]  E. Gdoutos,et al.  Fracture Mechanics , 2020, Encyclopedic Dictionary of Archaeology.

[60]  S. Stuart,et al.  A reactive potential for hydrocarbons with intermolecular interactions , 2000 .

[61]  K. M. Liew,et al.  Tensile and compressive properties of carbon nanotube bundles , 2006 .

[62]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[63]  Dewei Qi,et al.  Molecular dynamics simulation of thermal and mechanical properties of polyimide–carbon-nanotube composites , 2005 .

[64]  T. Belytschko,et al.  A review of extended/generalized finite element methods for material modeling , 2009 .

[65]  A. Needleman,et al.  A COMPARISON OF METHODS FOR CALCULATING ENERGY RELEASE RATES , 1985 .

[66]  Shuodao Wang,et al.  A Mixed-Mode Crack Analysis of Isotropic Solids Using Conservation Laws of Elasticity , 1980 .

[67]  Theodore L. Brown Chemistry: The Central Science , 1981 .

[68]  H. Waisman,et al.  AN ADAPTIVE DOMAIN DECOMPOSITION PRECONDITIONER FOR CRACK PROPAGATION PROBLEMS MODELED BY XFEM , 2013 .

[69]  M. Lundstrom,et al.  Ballistic carbon nanotube field-effect transistors , 2003, Nature.

[70]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[71]  L. Banks‐Sills,et al.  The conservative M-integral for thermal-elastic problems , 2004 .

[72]  Thomas P. Minka,et al.  Gates , 2008, NIPS.

[73]  Erik Dujardin,et al.  Young's modulus of single-walled nanotubes , 1998 .

[74]  J. Bernholc,et al.  Nanomechanics of carbon tubes: Instabilities beyond linear response. , 1996, Physical review letters.

[75]  Alex M. Andrew,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science (2nd edition) , 2000 .

[76]  Hayashi,et al.  Interlayer spacings in carbon nanotubes. , 1993, Physical review. B, Condensed matter.

[77]  R. Smalley Crystalline Ropes of Metallic Carbon Nanotubes , 1999 .

[78]  F. Erdogan,et al.  On the Crack Extension in Plates Under Plane Loading and Transverse Shear , 1963 .

[79]  N. Zhao,et al.  An Approach to Obtaining Homogeneously Dispersed Carbon Nanotubes in Al Powders for Preparing Reinforced Al‐Matrix Composites , 2007 .

[80]  K. Schulte,et al.  Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content , 2004 .

[81]  F. Yuan,et al.  Simulation of elastic properties of single-walled carbon nanotubes , 2003 .