Digital Topology
暂无分享,去创建一个
[1] Werner Nagel. Image Analysis and Mathematical Morphology. Volume 2: Theoretical Advances. Edited by Jean Serra , 1870 .
[2] W. Blaschke. Vorlesungen über Integralgeometrie , 1937 .
[3] F. Thorne,et al. Geometry of Numbers , 2017, Algebraic Number Theory.
[4] Peter E. Hart,et al. GRAPHICAL-DATA-PROCESSING RESEARCH STUDY AND EXPERIMENTAL INVESTIGATION , 1964 .
[5] Frank Harary,et al. Graph Theory , 2016 .
[6] Marvin Minsky,et al. Perceptrons: An Introduction to Computational Geometry , 1969 .
[7] Dana S. Scott,et al. Outline of a Mathematical Theory of Computation , 1970 .
[8] M. V. Novikov,et al. Academy of Sciences of the Ukrainian SSR , 1970 .
[9] G. Matheron. Random Sets and Integral Geometry , 1976 .
[10] Dana S. Scott,et al. Data Types as Lattices , 1976, SIAM J. Comput..
[11] Azriel Rosenfeld,et al. Fuzzy Digital Topology , 1979, Inf. Control..
[12] Jean-Marc Chassery,et al. Connectivity and consecutivity in digital pictures , 1979 .
[13] Azriel Rosenfeld,et al. Three-Dimensional Digital Topology , 1981, Inf. Control..
[14] FUZZY PRETOPOLOGICAL STRUCTURES AND FORMATION OF COALITIONS , 1982 .
[15] T. Pavlidis. Algorithms for Graphics and Image Processing , 1981, Springer Berlin Heidelberg.
[16] Jean Serra,et al. Image Analysis and Mathematical Morphology , 1983 .
[17] C. B. Wilson,et al. The mathematical description of shape and form , 1984 .
[18] Henk Barendregt,et al. The Lambda Calculus: Its Syntax and Semantics , 1985 .
[19] A. W. Roscoe,et al. Continuous analogs of axiomatized digital surfaces , 1984, Comput. Vis. Graph. Image Process..
[20] Azriel Rosenfeld,et al. 'Continuous' functions on digital pictures , 1986, Pattern Recognit. Lett..
[21] Mark A. Roth. Theoretical advances in *** , 1986, CSC '86.
[22] Efim Khalimsky,et al. Topological structures in computer science , 1987 .
[23] P. P. Das,et al. Knight's distance in digital geometry , 1988, Pattern Recognit. Lett..
[24] Azriel Rosenfeld,et al. Digital topology: Introduction and survey , 1989, Comput. Vis. Graph. Image Process..
[25] T. Yung Kong,et al. A digital fundamental group , 1989, Comput. Graph..
[26] Vladimir A. Kovalevsky,et al. Finite topology as applied to image analysis , 1989, Comput. Vis. Graph. Image Process..
[27] D. Stoyan,et al. Stochastic Geometry and Its Applications , 1989 .
[28] P. R. Meyer,et al. Computer graphics and connected topologies on finite ordered sets , 1990 .
[29] L. L. Miller,et al. Topological Approach for Testing Equivalence in Heterogeneous Relational Databases , 1990, Comput. J..
[30] Azriel Rosenfeld,et al. If we use 4- or 8-connectedness for both the objects and the background, the Euler characteristics is not locally computable , 1990, Pattern Recognition Letters.
[31] Gabor T. Herman,et al. On topology as applied to image analysis , 1990, Comput. Vis. Graph. Image Process..
[32] Azriel Rosenfeld,et al. Winding and Euler numbers for 2D and 3D digital images , 1991, CVGIP Graph. Model. Image Process..
[33] Ralph Kopperman,et al. A Jordan surface theorem for three-dimensional digital spaces , 1991, Discret. Comput. Geom..
[34] E. H. Kronheimer. The topology of digital images , 1992 .
[35] A. W. Roscoe,et al. Concepts of digital topology , 1992 .
[36] Gabor T. Herman,et al. Discrete multidimensional Jordan surfaces , 1992, CVGIP Graph. Model. Image Process..
[37] Norman Levitt,et al. The euler characteristic is the unique locally determined numerical homotopy invariant of finite complexes , 1992, Discret. Comput. Geom..
[38] Longin Jan Latecki. Digitale und Allgemeine Topologie in der bildhaften Wissensrepräsentation , 1992, DISKI.
[39] Azriel Rosenfeld,et al. Holes and Genus of 2D and 3D Digital Images , 1993, CVGIP Graph. Model. Image Process..
[40] Longin Jan Latecki,et al. Topological connectedness and 8-connectedness in digital pictures , 1993 .
[41] ULRICH ECKHARDT,et al. Invariant Thinning , 1993, Int. J. Pattern Recognit. Artif. Intell..
[42] Longin Jan Latecki,et al. Digitizations preserving topological and differential geometric properties , 1995, Other Conferences.