Surface modification of cellulose fibres

Several approaches to the modification of cellulose fibres are described, namely: (i) physical treatments such as corona or plasma treatments under different atmospheres; (ii) grafting with hydrophobic molecules using well-known sizing compounds; (iii) grafting with bi-functional molecules, leaving one of the functions available for further exploitation; and (iv) grafting with organometallic compounds. The modified surfaces were characterized by elemental analysis, contact angle measurements, inverse gas chromatography, X-ray photoelectron and infrared spectroscopy, wettability, etc. These different tools provided clear-cut evidence of the occurrence of chemical reactions between the grafting agent used and the hydroxy functions of the cellulose surface, as well as of the existence of covalent bonding in the ensuing composite materials between the matrix and the fibres through the use of doubly reactive coupling agents.

[1]  Y. Ikada,et al.  Surface oxidation of cellulose fibers by vacuum ultraviolet irradiation , 1999 .

[2]  S. Vicini,et al.  Physical-chemical characterisation of acrylic polymers grafted on cellulose , 2002 .

[3]  Ming Qiu Zhang,et al.  Environmental degradability of self-reinforced composites made from sisal , 2004 .

[4]  Gennaro Gentile,et al.  Synthesis and mechanical characterisation of cellulose based textiles grafted with acrylic monomers , 2006 .

[5]  P. Gatenholm,et al.  Controlled interactions in cellulose‐polymer composites. 1: Effect on mechanical properties , 1993 .

[6]  S. Boufi,et al.  Adsorption of organic compounds onto polyelectrolyte immobilized-surfactant aggregates on cellulosic fibers. , 2004, Journal of colloid and interface science.

[7]  Manjusri Misra,et al.  Recent advances in biodegradable nanocomposites. , 2005, Journal of nanoscience and nanotechnology.

[8]  J. Balatinecz,et al.  X-ray photoelectron spectroscopy study of silane-treated newsprint-fibers , 1999, Wood Science and Technology.

[9]  J. Mergaert,et al.  Natural cellulose fibers: heterogeneous acetylation kinetics and biodegradation behavior. , 2001, Biomacromolecules.

[10]  R. Samal,et al.  GRAFT COPOLYMERIZATION OF CELLULOSE, CELLULOSE DERIVATIVES, AND LIGNOCELLULOSE , 1986 .

[11]  P. Gatenholm,et al.  Characterization of cellulose fibers using inverse gas chromatography , 1993 .

[12]  Alessandro Gandini,et al.  The surface modification of cellulose fibres for use as reinforcing elements in composite materials , 2005 .

[13]  A. Ragauskas,et al.  Surface modification of cellulosic fibers using dielectric-barrier discharge , 2006 .

[14]  Christian V. Stevens,et al.  Renewable bioresources : scope and modification for non-food applications , 2004 .

[15]  Hyoung-Joon Jin,et al.  Electrically conductive bacterial cellulose by incorporation of carbon nanotubes. , 2006, Biomacromolecules.

[16]  L. Wojnárovits,et al.  Effect of high-energy radiation and alkali treatment on the properties of cellulose , 2003 .

[17]  E. Takács,et al.  Effect of preswelling on radiation degradation of cotton cellulose , 2003 .

[18]  S. Boufi,et al.  Modified cellulose fibres for adsorption of dissolved organic solutes , 2006 .

[19]  J. Guthrie,et al.  The chemistry and technology of cellulosic copolymers , 1981 .

[20]  A. Duarte,et al.  Modification of cellulosic fibres with functionalised silanes: development of surface properties , 2004 .

[21]  S. Vicini,et al.  Grafting polymerization on cellulose based textiles: A 13C solid state NMR characterization , 2005 .

[22]  G. Garnier,et al.  Measuring the surface energies of spherical cellulose beads by inverse gas chromatography , 1996 .

[23]  D. Zabetakis,et al.  Metal‐Coated Cellulose Fibers for Use in Composites Applicable to Microwave Technology , 2005 .

[24]  Paul Gatenholm,et al.  The nature of adhesion in composites of modified cellulose fibers and polypropylene , 1991 .

[25]  P. Gatenholm,et al.  Wood Fiber Reinforced Composites , 1992 .

[26]  S. Boufi,et al.  Polymerization of pyrrole on cellulose fibres using a FeCl3 impregnation- pyrrole polymerization sequence , 2006 .

[27]  S. Boufi,et al.  Adsorption of octadecyltrimethylammonium chloride and adsolubilization on to cellulosic fibers , 2004 .

[28]  K. Matyjaszewski Advances in Controlled/living radical polymerization , 2003 .

[29]  Sabu Thomas,et al.  Influence of chemical treatments on the electrokinetic properties of cellulose fibres , 2002 .

[30]  A. Błędzki,et al.  About the surface characteristics of natural fibres , 2000 .

[31]  S. Hvilsted,et al.  Modification of jute fibers with polystyrene via atom transfer radical polymerization. , 2005, Biomacromolecules.

[32]  A. Gandini,et al.  Direct transformation of cellulose fibres into self-reinforced composites by partial oxypropylation , 2005 .

[33]  J. Háfren,et al.  Direct Organocatalytic Polymerization from Cellulose Fibers , 2005 .

[34]  A. Gandini,et al.  Controlled heterogeneous modification of cellulose fibers with fatty acids: Effect of reaction conditions on the extent of esterification and fiber properties , 2006 .

[35]  M. Gonçalves,et al.  Eucalyptus Kraft pulp fibers as an alternative reinforcement of silicone composites. I. Characterization and chemical modification of Eucalyptus fibers with organosilane coupling agent , 2002 .

[36]  P. Gatenholm,et al.  Formation of entanglements at brushlike interfaces in cellulose–polymer composites , 1993 .

[37]  Matija Strlič,et al.  Surface modification during Nd : YAG (1064 nm) pulsed laser cleaning of organic fibrous materials , 2003 .

[38]  D. Caulfield,et al.  Surface Energy Compatibilites of Cellulose and Polypropylene , 1992 .

[39]  P. Gatenholm,et al.  Determination of Surface Functional Groups in Lignocellulosic Materials by Chemical Derivatization and ESCA Analysis , 2006 .

[40]  A. Gandini,et al.  Reversible hydrophobization and lipophobization of cellulose fibers via trifluoroacetylation. , 2006, Journal of colloid and interface science.

[41]  Dae-Young Kim,et al.  Surface acetylation of bacterial cellulose , 2002 .

[42]  Ferdous Khan,et al.  Gamma-radiation induced changes in the physical and chemical properties of lignocellulose. , 2006, Biomacromolecules.

[43]  D. Bhattacharyya,et al.  Mechanical properties of plasma-treated sisal fibre-reinforced polypropylene composites , 2004 .

[44]  Simone Pentzien,et al.  Near-UV and visible pulsed laser interaction with paper , 2000 .

[45]  Sabu Thomas,et al.  Effect of fibre surface modification on water-sorption characteristics of oil palm fibres , 2003 .

[46]  M. Misra,et al.  Biofibres, biodegradable polymers and biocomposites: An overview , 2000 .

[47]  M. Rong,et al.  Self-reinforced melt processable composites of sisal , 2003 .

[48]  R. Rowell Chemical Modification of Lignocellulosic Fibers To Produce High-Performance Composites , 1990 .

[49]  C. Werner,et al.  Covalent immobilization of cellulose layers onto maleic anhydride copolymer thin films. , 2005, Biomacromolecules.

[50]  S. Eichhorn,et al.  Review: Current international research into cellulosic fibres and composites , 2001 .

[51]  R. A. Young,et al.  Surface fluorination of paper in CF4-RF plasma environments , 2002 .

[52]  Eva Malmström,et al.  Atom transfer radical polymerization from cellulose fibers at ambient temperature. , 2002, Journal of the American Chemical Society.

[53]  A. Gandini,et al.  Formation of polymeric films on cellulosic surfaces by admicellar polymerization , 2001 .

[54]  Lina Zhang,et al.  Structure and Properties of CdS/Regenerated Cellulose Nanocomposites , 2005 .

[55]  A. McDonald,et al.  The effect of silane coupling agents on radiata pine fibre for use in thermoplastic matrix composites , 2003 .

[56]  Anna Carlmark,et al.  ATRP grafting from cellulose fibers to create block-copolymer grafts. , 2003, Biomacromolecules.

[57]  A. Gandini,et al.  Activation of solid polymer surfaces with bifunctional reagents , 2001 .

[58]  A. Gandini,et al.  Heterogeneous Chemical Modification of Cellulose for Composite Materials , 2005 .

[59]  A. Gandini,et al.  Surface characterization of cellulose fibres by XPS and inverse gas chromatography , 1995 .

[60]  Jay Shah,et al.  Towards electronic paper displays made from microbial cellulose , 2004, Applied Microbiology and Biotechnology.

[61]  Paula A. A. P. Marques,et al.  Titanium dioxide/cellulose nanocomposites prepared by a controlled hydrolysis method , 2006 .

[62]  Sébastien Perrier,et al.  Graft Polymerization: Grafting Poly(styrene) from Cellulose via Reversible Addition−Fragmentation Chain Transfer (RAFT) Polymerization , 2005 .

[63]  R. Young,et al.  Highly hydrophobic sisal chemithermomechanical pulp (CTMP) paper by fluorotrimethylsilane plasma treatment , 2003 .

[64]  Byung‐Dae Park,et al.  X-ray photoelectron spectroscopy of rice husk surface modified with maleated polypropylene and silane , 2004 .

[65]  A. Błędzki,et al.  Composites reinforced with cellulose based fibres , 1999 .

[66]  H. Brumer,et al.  Grafting of Cellulose Fibers with Poly(E-caprolactone) and Poly(L-lactic acid) via Ring-Opening Polymerization , 2006 .

[67]  B. Riedl,et al.  Fibrous long‐chain organic acid cellulose esters and their characterization by diffuse reflectance FTIR spectroscopy, solid‐state CP/MAS 13C‐NMR, and X‐ray diffraction , 2000 .

[68]  R. Olayo,et al.  Chemical modification of henequén fibers with an organosilane coupling agent , 1999 .

[69]  A. Gandini,et al.  Adsorption of cationic surfactants and subsequent adsolubilization of organic compounds onto cellulose fibers , 2004 .

[70]  Roberto Olayo,et al.  Effect of fiber surface treatment on the fiber-matrix bond strength of natural fiber reinforced composites , 1999 .

[71]  A. Gandini,et al.  Interaction of Silane Coupling Agents with Cellulose , 2002 .

[72]  A. Gandini,et al.  Surface esterification of cellulose fibers: characterization by DRIFT and contact angle measurements. , 2006, Journal of colloid and interface science.

[73]  M. Coskun,et al.  Grafting studies onto cellulose by atom-transfer radical polymerization , 2005 .

[74]  S. Kuga,et al.  Surface Esterification of Cellulose by Vapor-Phase Treatment With Trifluoroacetic Anhydride , 2005 .

[75]  H. Brumer,et al.  Use of xyloglucan as a molecular anchor for the elaboration of polymers from cellulose surfaces : A general route for the design of biocomposites , 2005 .

[76]  Richard P. Wool,et al.  Bio-based polymers and composites , 2005 .

[77]  S. Boufi,et al.  Adsorption of a cationic surfactant onto cellulosic fibers I. Surface charge effects. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[78]  A. Gandini,et al.  Surface characterization by XPS, contact angle measurements and ToF-SIMS of cellulose fibers partially esterified with fatty acids. , 2006, Journal of colloid and interface science.

[79]  P. Fabbri,et al.  Modification of cellulose fibres with organosilanes: Under what conditions does coupling occur? , 2004, Journal of colloid and interface science.