The Most General Conservation Law for a Cellular Automaton

We study the group-valued and semigroup-valued conservation laws in cellular automata (CA). We provide examples to distinguish between semigroup-valued, group-valued and real-valued conservation laws. We prove that, even in one-dimensional case, it is undecidable if a CA has any non-trivial conservation law of each type. For a fixed range, each CA has a most general (group-valued or semigroup-valued) conservation law, encapsulating all conservation laws of that range. For one-dimensional CA the semigroup corresponding to such a most general conservation law has an effectively constructible finite presentation, while for higher-dimensional ones no such effective construction exists.

[1]  Enrico Formenti,et al.  Number conserving cellular automata II: dynamics , 2003, Theor. Comput. Sci..

[2]  A. Biryukov,et al.  Some algorithmic problems for finitely defined commutative semigroups , 1967 .

[3]  Nino Boccara,et al.  Number-conserving cellular automaton rules , 1999, Fundam. Informaticae.

[4]  Jarkko Kari,et al.  Theory of cellular automata: A survey , 2005, Theor. Comput. Sci..

[5]  J. Myhill The converse of Moore’s Garden-of-Eden theorem , 1963 .

[6]  E. F. Moore Machine Models of Self-Reproduction , 1962 .

[7]  Enrico Formenti,et al.  Number-conserving cellular automata I: decidability , 2003, Theor. Comput. Sci..

[8]  John Myhill Shorter Note: The Converse of Moore's Garden-of-Eden Theorem , 1963 .

[9]  W. Thurston Conway's tiling groups , 1990 .

[10]  Jarkko Kari,et al.  Reversibility and Surjectivity Problems of Cellular Automata , 1994, J. Comput. Syst. Sci..

[11]  T. Hattori,et al.  Additive conserved quantities in discrete-time lattice dynamical systems , 1991 .

[12]  Jeffrey C. Lagarias,et al.  Tiling with polyominoes and combinatorial group theory , 1990, J. Comb. Theory, Ser. A.

[13]  Vincent D. Blondel,et al.  On the presence of periodic configurations in Turing machines and in counter machines , 2002, Theoretical Computer Science.

[14]  P. A. Grillet Semigroups: An Introduction to the Structure Theory , 1995 .

[15]  Arch D. Robison,et al.  Fast Computation of Additive Cellular Automata , 1987, Complex Syst..