The Most General Conservation Law for a Cellular Automaton
暂无分享,去创建一个
[1] Enrico Formenti,et al. Number conserving cellular automata II: dynamics , 2003, Theor. Comput. Sci..
[2] A. Biryukov,et al. Some algorithmic problems for finitely defined commutative semigroups , 1967 .
[3] Nino Boccara,et al. Number-conserving cellular automaton rules , 1999, Fundam. Informaticae.
[4] Jarkko Kari,et al. Theory of cellular automata: A survey , 2005, Theor. Comput. Sci..
[5] J. Myhill. The converse of Moore’s Garden-of-Eden theorem , 1963 .
[6] E. F. Moore. Machine Models of Self-Reproduction , 1962 .
[7] Enrico Formenti,et al. Number-conserving cellular automata I: decidability , 2003, Theor. Comput. Sci..
[8] John Myhill. Shorter Note: The Converse of Moore's Garden-of-Eden Theorem , 1963 .
[9] W. Thurston. Conway's tiling groups , 1990 .
[10] Jarkko Kari,et al. Reversibility and Surjectivity Problems of Cellular Automata , 1994, J. Comput. Syst. Sci..
[11] T. Hattori,et al. Additive conserved quantities in discrete-time lattice dynamical systems , 1991 .
[12] Jeffrey C. Lagarias,et al. Tiling with polyominoes and combinatorial group theory , 1990, J. Comb. Theory, Ser. A.
[13] Vincent D. Blondel,et al. On the presence of periodic configurations in Turing machines and in counter machines , 2002, Theoretical Computer Science.
[14] P. A. Grillet. Semigroups: An Introduction to the Structure Theory , 1995 .
[15] Arch D. Robison,et al. Fast Computation of Additive Cellular Automata , 1987, Complex Syst..