Resolving the polar interface of infinite-layer nickelate thin films

[1]  L. Kourkoutis,et al.  Character of the"normal state"of the nickelate superconductors , 2022, 2203.02580.

[2]  S. Agrestini,et al.  Charge density waves in infinite-layer NdNiO2 nickelates , 2021, Nature Materials.

[3]  N. Brookes,et al.  Charge and Spin Order Dichotomy in NdNiO_{2} Driven by the Capping Layer. , 2021, Physical review letters.

[4]  Haiyu Lu,et al.  A broken translational symmetry state in an infinite-layer nickelate , 2021, Nature Physics.

[5]  Zheng Hua Zhu,et al.  Pressure-induced monotonic enhancement of Tc to over 30 K in superconducting Pr0.82Sr0.18NiO2 thin films , 2021, Nature Communications.

[6]  Xinmao Yin,et al.  Superconductivity in infinite-layer nickelate La1−xCaxNiO2 thin films , 2021, Science advances.

[7]  C. J. Li,et al.  Observation of perfect diamagnetism and interfacial effect on the electronic structures in infinite layer Nd0.8Sr0.2NiO2 superconductors , 2021, Nature communications.

[8]  L. Kourkoutis,et al.  Superconductivity in a quintuple-layer square-planar nickelate , 2021, Nature Materials.

[9]  T. Xiang,et al.  Strain-induced enhancement of $T_c$ in infinite-layer Pr$_{0.8}$Sr$_{0.2}$NiO$_2$ films , 2021, 2109.05761.

[10]  M. Isobe,et al.  Topotactic transformation of single crystals: From perovskite to infinite-layer nickelates , 2021, Science advances.

[11]  L. Kourkoutis,et al.  Nickelate Superconductivity without Rare‐Earth Magnetism: (La,Sr)NiO2 , 2021, Advanced materials.

[12]  H. Hwang,et al.  Magnetic excitations in infinite-layer nickelates , 2021, Science.

[13]  Peishan Qin,et al.  Negligible oxygen vacancies, low critical current density, electric-field modulation, in-plane anisotropic and high-field transport of a superconducting Nd0.8Sr0.2NiO2/SrTiO3 heterostructure , 2021, Rare Metals.

[14]  B. Geisler,et al.  Active learning and element-embedding approach in neural networks for infinite-layer versus perovskite oxides , 2021, Physical Review Research.

[15]  B. Geisler,et al.  Correlated interface electron gas in infinite-layer nickelate versus cuprate films on SrTiO3(001) , 2021, 2102.11204.

[16]  Q. Gao,et al.  Preparation of Superconducting Thin Films of Infinite-Layer Nickelate Nd0.8Sr0.2NiO2 , 2021, Chinese Physics Letters.

[17]  E. Schierle,et al.  Superlattice approach to doping infinite-layer nickelates , 2021, Physical Review B.

[18]  L. Kourkoutis,et al.  Isotropic Pauli-limited superconductivity in the infinite-layer nickelate Nd0.775Sr0.225NiO2 , 2021, Nature Physics.

[19]  L. Kourkoutis,et al.  Strain-stabilized superconductivity , 2020, Nature communications.

[20]  L. Kourkoutis,et al.  Doping evolution of the Mott–Hubbard landscape in infinite-layer nickelates , 2020, Proceedings of the National Academy of Sciences.

[21]  C. J. Li,et al.  Superconductivity in infinite-layer lanthanide nickelates , 2021 .

[22]  L. Kourkoutis,et al.  Isotropic Pauli-limited superconductivity in the infinite-layer nickelate Nd0.775Sr0.225NiO2 , 2020, 2012.06560.

[23]  A. Cano,et al.  Nickelate Superconductors: An Ongoing Dialog between Theory and Experiments , 2020, Journal of Experimental and Theoretical Physics.

[24]  H. Li,et al.  Single particle tunneling spectrum of superconducting Nd1-xSrxNiO2 thin films , 2020, Nature Communications.

[25]  E. Dagotto,et al.  Similarities and differences between nickelate and cuprate films grown on a SrTiO3 substrate , 2020, Physical Review B.

[26]  L. Kourkoutis,et al.  A superconducting praseodymium nickelate with infinite layer structure. , 2020, Nano letters.

[27]  H. Li,et al.  Two superconducting components with different symmetries in Nd1-xSrxNiO2 films , 2020, 2006.13123.

[28]  Z. Zhong,et al.  Polarity-induced electronic and atomic reconstruction at NdNiO2/SrTiO3 interfaces , 2020, 2006.00656.

[29]  Ping Yang,et al.  Phase Diagram and Superconducting Dome of Infinite-Layer Nd_{1-x}Sr_{x}NiO_{2} Thin Films. , 2020, Physical review letters.

[30]  F. D. de Groot,et al.  Oxygen K-edge X-ray Absorption Spectra , 2020, Chemical reviews.

[31]  L. Kourkoutis,et al.  Superconducting Dome in Nd_{1-x}Sr_{x}NiO_{2} Infinite Layer Films. , 2020, Physical review letters.

[32]  L. Kourkoutis,et al.  Aspects of the synthesis of thin film superconducting infinite-layer nickelates , 2020, APL Materials.

[33]  L. Kourkoutis,et al.  Atomic-Resolution Cryo-STEM Across Continuously Variable Temperatures , 2020, Microscopy and Microanalysis.

[34]  B. Geisler,et al.  Fundamental difference in the electronic reconstruction of infinite-layer versus perovskite neodymium nickelate films on SrTiO3 (001) , 2020, Physical Review B.

[35]  A. Cano,et al.  Stability and electronic properties of LaNiO2/SrTiO3 heterostructures , 2020, Journal of Physics: Materials.

[36]  F. Lechermann Late transition metal oxides with infinite-layer structure: Nickelates versus cuprates , 2019, Physical Review B.

[37]  T. P. Devereaux,et al.  Electronic structure of the parent compound of superconducting infinite-layer nickelates , 2019, Nature Materials.

[38]  L. Kourkoutis,et al.  Superconducting Dome in Nd1-xSrxNiO2 Infinite Layer Films , 2020 .

[39]  R. Arita,et al.  Formation of a two-dimensional single-component correlated electron system and band engineering in the nickelate superconductor NdNiO2 , 2019, Physical Review B.

[40]  Harold Y. Hwang,et al.  Superconductivity in an infinite-layer nickelate , 2019, Nature.

[41]  L. Kourkoutis,et al.  Demystifying the growth of superconducting Sr2RuO4 thin films , 2018, APL Materials.

[42]  Colin B. Clement,et al.  Tricky Registration for Unruly Data: Image Registration of Low-Signal-to-Noise Cryo-STEM Data , 2017, Microscopy and Microanalysis.

[43]  S. Simon,et al.  Strong peak in Tc of Sr2RuO4 under uniaxial pressure , 2016, Science.

[44]  Y. Maeno,et al.  Strong Increase of Tc of Sr2RuO4 Under Both Tensile and Compressive Strain , 2014, Science.

[45]  D. Muller,et al.  Visualizing the interfacial evolution from charge compensation to metallic screening across the manganite metal–insulator transition , 2014, Nature Communications.

[46]  J. Goodenough,et al.  Estimating Hybridization of Transition Metal and Oxygen States in Perovskites from O K-edge X-ray Absorption Spectroscopy , 2014 .

[47]  James M Rondinelli,et al.  Heterointerface engineered electronic and magnetic phases of NdNiO3 thin films , 2013, Nature Communications.

[48]  D. Muller,et al.  Atomic-resolution spectroscopic imaging of oxide interfaces , 2010 .

[49]  D. Muller,et al.  Microscopic origins for stabilizing room-temperature ferromagnetism in ultrathin manganite layers , 2010, Proceedings of the National Academy of Sciences.

[50]  H. Hwang,et al.  Two-dimensional normal-state quantum oscillations in a superconducting heterostructure , 2009, Nature.

[51]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[52]  D. Muller,et al.  Asymmetric interface profiles in LaVO3∕SrTiO3 heterostructures grown by pulsed laser deposition , 2007 .

[53]  N. Reyren,et al.  Superconducting Interfaces Between Insulating Oxides , 2007, Science.

[54]  D. Muller,et al.  Why some interfaces cannot be sharp , 2005, cond-mat/0510491.

[55]  Stefano de Gironcoli,et al.  Linear response approach to the calculation of the effective interaction parameters in the LDA + U method , 2004, cond-mat/0405160.

[56]  Akira Ohtomo,et al.  A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface , 2004, Nature.

[57]  Akira Ohtomo,et al.  Artificial charge-modulationin atomic-scale perovskite titanate superlattices , 2002, Nature.

[58]  V. Anisimov,et al.  Electronic structure of possible nickelate analogs to the cuprates , 1999 .

[59]  Y. Kido,et al.  Structure change of TiO2-terminated SrTiO3(001) surfaces by annealing in O2 atmosphere and ultrahigh vacuum , 1999 .

[60]  H. Koinuma,et al.  Observation of SrTiO3 step edge dynamics by real-time high-temperature STM , 1998 .

[61]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[62]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[63]  G. Sawatzky,et al.  Density-functional theory and NiO photoemission spectra. , 1993, Physical review. B, Condensed matter.

[64]  de Groot FM,et al.  Oxygen 1s x-ray absorption of tetravalent titanium oxides: A comparison with single-particle calculations. , 1993, Physical review. B, Condensed matter.

[65]  R. Egerton Oscillator-strength parameterization of inner-shell cross sections , 1993 .

[66]  M. Cantoni,et al.  Superconductivity above 130 K in the Hg–Ba–Ca–Cu–O system , 1993, Nature.

[67]  K. A. Müller,et al.  Possible High T cSuperconductivity in the Ba — La — Cu — O System , 1993 .

[68]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[69]  G. Sawatzky,et al.  Oxygen 1s x-ray-absorption edges of transition-metal oxides. , 1989, Physical review. B, Condensed matter.

[70]  Paxton,et al.  High-precision sampling for Brillouin-zone integration in metals. , 1989, Physical review. B, Condensed matter.

[71]  A. Hermann,et al.  Bulk superconductivity at 120 K in the Tl–Ca/Ba–Cu–O system , 1988, Nature.

[72]  M. Fukutomi,et al.  A New High-Tc Oxide Superconductor without a Rare Earth Element , 1988 .

[73]  Chu,et al.  Superconductivity at 93 K in a new mixed-phase Yb-Ba-Cu-O compound system at ambient pressure. , 1987, Physical review letters.

[74]  P. Stetson DAOPHOT: A COMPUTER PROGRAM FOR CROWDED-FIELD STELLAR PHOTOMETRY , 1987 .

[75]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[76]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[77]  K. Lee,et al.  Infinite-layer LaNiO 2 : Ni 1 + is , 2022 .