Games and Full Completeness for Multiplicative Linear Logic

We present a game semantics for Linear Logic, in which formulas denote games and proofs denote winning strategies. We show that our semantics yields a categorical model of Linear Logic and prove full completeness for Multiplicative Linear Logic with the MIX rule: every winning strategy is the denotation of a unique cut-free proof net. A key role is played by the notion of history-free strategy: strong connections are made between history-free strategies and the Geometry of Interaction. Our semantics incorporates a natural notion of polarity, leading to a refined treatment of the additives. We make comparisons with related work by Joyal, Blass, et al.

[1]  G.D. Plotkin,et al.  LCF Considered as a Programming Language , 1977, Theor. Comput. Sci..

[2]  Samson Abramsky,et al.  Computational Interpretations of Linear Logic , 1993, Theor. Comput. Sci..

[3]  Robin Milner,et al.  Processes: A Mathematical Model of Computing Agents , 1975 .

[4]  Andreas Blass,et al.  A Game Semantics for Linear Logic , 1992, Ann. Pure Appl. Log..

[5]  Yves Lafont,et al.  Interaction nets , 1989, POPL '90.

[6]  Edmund Robinson,et al.  Algebraic Types in PER Models , 1989, Mathematical Foundations of Programming Semantics.

[7]  Jean-Yves Girard,et al.  On the Unity of Logic , 1993, Ann. Pure Appl. Log..

[8]  C. A. R. Hoare,et al.  Communicating sequential processes , 1978, CACM.

[9]  Brian A. Davey,et al.  An Introduction to Lattices and Order , 1989 .

[10]  J. Conway On Numbers and Games , 1976 .

[11]  Jean-Yves Girard,et al.  Geometry of Interaction 1: Interpretation of System F , 1989 .

[12]  Andreas Blass,et al.  Degrees of indeterminacy of games , 1972 .

[13]  Gerard Berry,et al.  Theory and practice of sequential algorithms: the kernel of the applicative language CDS , 1986 .

[14]  Jean-Yves Girard,et al.  Towards a geometry of interaction , 1989 .

[15]  Samson Abramsky,et al.  Proofs as Processes , 1992, Theor. Comput. Sci..

[16]  Jean-Yves Girard,et al.  Linear Logic , 1987, Theor. Comput. Sci..

[17]  Radha Jagadeesan,et al.  New foundations for the geometry of interaction , 1992, [1992] Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science.

[18]  de Paiva,et al.  The Dialectica categories , 1991 .

[19]  Martín Abadi,et al.  Linear logic without boxes , 1992, [1992] Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science.

[20]  Thomas Streicher,et al.  Games semantics for linear logic , 1991, [1991] Proceedings Sixth Annual IEEE Symposium on Logic in Computer Science.

[21]  Bart Jacobs,et al.  Semantics of Weakening and Contraction , 1994, Ann. Pure Appl. Log..

[22]  Jean-Yves Girard,et al.  Geometry of interaction 2: deadlock-free algorithms , 1990, Conference on Computer Logic.

[23]  John W. Gray,et al.  Categories in Computer Science and Logic , 1989 .

[24]  Vincent Danos,et al.  The structure of multiplicatives , 1989, Arch. Math. Log..

[25]  Simon L. Peyton Jones,et al.  Imperative functional programming , 1993, POPL '93.

[26]  Glynn Winskel,et al.  DI-Domains as a Model of Polymorphism , 1987, MFPS.

[27]  Andre Scedrov,et al.  Functorial Polymorphism , 1990, Theor. Comput. Sci..

[28]  Michael Barr,et al.  *-Autonomous categories and linear logic , 1991, Mathematical Structures in Computer Science.

[29]  Steven J. Vickers,et al.  Quantales, observational logic and process semantics , 1993, Mathematical Structures in Computer Science.

[30]  Jean-Yves Girard,et al.  A new constructive logic: classic logic , 1991, Mathematical Structures in Computer Science.

[31]  Jean-Yves Girard,et al.  The System F of Variable Types, Fifteen Years Later , 1986, Theor. Comput. Sci..

[32]  Christian Retoré,et al.  The mix rule , 1994, Mathematical Structures in Computer Science.

[33]  Richard Blute,et al.  Linear Logic, Coherence, and Dinaturality , 1993, Theor. Comput. Sci..

[34]  Radha Jagadeesan,et al.  Games and full completeness for multiplicative linear logic , 1992, Journal of Symbolic Logic.