CdS nanoparticles chemically modified PAN functional materials: Preparation and nonlinear optical properties

Abstract The fabrication of nanocomposites by covalent inclusion of inorganic nanoparticles in an organic polymer matrix is highly topical and may find applications in the electronics, optics and energy sectors. Incorporation of CdS nanoparticles into the polyacrylonitrile (PAN) matrices could be expected to display improved or enhanced optoelectronic and optical properties. Using a newly synthesized RAFT agent, i.e. , CdS-DDAT nanoparticles (DDAT: S-1-Dodecyl-S′-(α, α′-dimethyl-α′′-acetic acid) trithiocarbonate), CdS covalently functionalized polyacrylonitrile (CdS-PAN) nanocomposite material was prepared in the presence of small amount of AIBN under ultrasonic radiation. This material, which exhibits an induced positive nonlinear absorption of incident light, has been well-characterized by a variety of physical techniques such as GPC, UV/vis, FT-IR, TGA, XRD and Z-scan.

[1]  Zhi‐Kang Xu,et al.  Surface engineerings of polyacrylonitrile-based asymmetric membranes towards biomedical applications: An overview , 2007 .

[2]  F. So,et al.  The effect of interfacial layer on the performance of organic light-emitting diodes , 2005 .

[3]  K. Vijayamohanan,et al.  Evidence for Second-Order Optical Nonlinearity in γ-Ray Induced Partially Cross-Linked Polyacrylonitrile , 2001 .

[4]  A. Fane,et al.  Star-polymer synthesis via radical reversible addition-fragmentation chain-transfer polymerization , 2001 .

[5]  T. Emrick,et al.  Reversible addition fragmentation chain transfer (RAFT) polymerization from unprotected cadmium selenide nanoparticles. , 2004, Angewandte Chemie.

[6]  Paul A. Fleitz,et al.  Nonlinear Optics of Organic Molecules and Polymers , 1997 .

[7]  Seungpyo Hong,et al.  Nanoparticle interaction with biological membranes: does nanotechnology present a Janus face? , 2007, Accounts of chemical research.

[8]  S. Badawy,et al.  Cross-Linked Polyacrylonitrile Prepared by Radiation-Induced Polymerization Technique , 2003 .

[9]  Li Lin,et al.  Ultrafast nonlinear optical property of the C60(CH3)x(PAN)x copolymer , 1999, Optics & Photonics.

[10]  Charles L. McCormick,et al.  Reversible addition–fragmentation chain transfer (RAFT) radical polymerization and the synthesis of water-soluble (co)polymers under homogeneous conditions in organic and aqueous media , 2007 .

[11]  J. Lakowicz,et al.  Emission Spectral Properties of Cadmium Sulfide Nanoparticles with Multiphoton Excitation. , 2002, The journal of physical chemistry. B.

[12]  G. Bowmaker,et al.  Vibrational spectroscopic study of thiophenolate-capped nanoclusters of CdS and of cadmium thiophenolate complexes , 1997 .

[13]  E. Samulski,et al.  Flagellenes: Nanophase-Separated, Polymer-Substituted Fullerenes , 1992 .

[14]  R. Cai,et al.  Preparation and structural characterization of a star-shaped C60HxBTPVKx copolymer , 1998 .

[15]  Jun‐Jie Zhu,et al.  Spectroelectrochemistry of hollow spherical CdSe quantum dot assemblies in water , 2007 .

[16]  Yaonan Xiao,et al.  SYNTHESIS AND STRUCTURAL CHARACTERIZATION OF A NOVEL AND STARLIKE C60(PMS)x(CH3)x COPOLYMER , 1997 .

[17]  M. Umeno,et al.  Improving photovoltaic response of poly(3-hexylthiophene)/n-Si heterojunction by incorporating double walled carbon nanotubes , 2006 .

[18]  J. Eden,et al.  Carbon nanotube-enhanced performance of microplasma devices , 2004 .

[19]  C. Chai,et al.  Preparation of styrene‐acrylic emulsion by using nano‐SiO2 as seeds , 2004 .

[20]  André Persoons,et al.  THIRD-ORDER NONLINEAR OPTICAL RESPONSE IN ORGANIC MATERIALS : THEORETICAL AND EXPERIMENTAL ASPECTS , 1994 .

[21]  M. El-Sayed,et al.  Chemistry and properties of nanocrystals of different shapes. , 2005, Chemical reviews.

[22]  James J. Doyle,et al.  Synthesis, Characterization, and Optoelectronic Properties of a Novel Polyfluorene/Poly(p-Phenylenevinylene) Copolymer , 2005 .

[23]  Nigel Pickett,et al.  Nanocrystalline semiconductors: Synthesis, properties, and perspectives , 2001 .

[24]  A. Fane,et al.  Porous Polymer Films and Honeycomb Structures Made by the Self‐Organization of Well‐Defined Macromolecular Structures Created by Living Radical Polymerization Techniques , 2001 .

[25]  R. Cai,et al.  Covalent incorporation of [70]fullerene into poly(p-methylstyrene) by anionic copolymerization , 2000 .

[26]  Graeme Moad,et al.  A more versatile route to block copolymers and other polymers of complex architecture by living radical polymerization : The RAFT process , 1999 .

[27]  A. Jen,et al.  Design and synthesis of chromophores and polymers for electro-optic and photorefractive applications , 1997, Nature.

[28]  G. Xu,et al.  Synthesis, Characterization, and Nonlinear Optical Properties of Hybridized CdS−Polystyrene Nanocomposites , 2002 .

[29]  M. Behboudnia,et al.  Conformational study of CdS nanoparticles prepared by ultrasonic waves , 2006 .

[30]  Paras N. Prasad,et al.  Toward Highly Active Two-Photon Absorbing Liquids. Synthesis and Characterization of 1,3,5-Triazine-Based Octupolar Molecules , 2004 .

[31]  J. Chiefari,et al.  Living free-radical polymerization by reversible addition - Fragmentation chain transfer: The RAFT process , 1998 .

[32]  Xiaodong Zhuang,et al.  Synthesis and self‐assembly of tadpole‐shaped organic/inorganic hybrid poly(N‐isopropylacrylamide) containing polyhedral oligomeric silsesquioxane via RAFT polymerization , 2008 .

[33]  Y. Levi-Kalisman,et al.  Synergetic effect of ultrasound and sodium dodecyl sulphate in the formation of CdS nanostructures in aqueous solution. , 2007, Ultrasonics sonochemistry.

[34]  Amitava Patra,et al.  Study of photophysical properties of capped CdS nanocrystals , 2007 .

[35]  Joseph Zyss,et al.  Nonlinear optical properties of organic molecules and crystals , 1987 .

[36]  Kai Zhang,et al.  CdS‐Nanoparticle/Polymer Composite Shells Grown on Silica Nanospheres by Atom‐Transfer Radical Polymerization , 2005 .

[37]  T. Mason,et al.  Applied Sonochemistry: The Uses of Power Ultrasound in Chemistry and Processing , 2002 .

[38]  Shi Chen,et al.  Synthesis and characterization of a soluble and starlike C60(CH3)x(PAN)x copolymer , 1997 .

[39]  T. Lian,et al.  Ultrafast charge separation at CdS quantum dot/rhodamine B molecule interface. , 2007, Journal of the American Chemical Society.

[40]  Y. Chen-Yang,et al.  Polyacrylonitrile electrolytes: 1. A novel high-conductivity composite polymer electrolyte based on PAN, LiClO4 and α-Al2O3 , 2002 .

[41]  Sudipta Seal,et al.  One dimensional nanostructured materials , 2007 .

[42]  T. Li,et al.  Synthesis and Characterization of CdS Nanoparticles and Nanorods via Solvo-Hydrothermal Route , 2007 .

[43]  L. Alexander,et al.  X-ray diffraction procedures , 1954 .

[44]  Liquan Chen,et al.  Investigation of the position of Li+ ions in a polyacrylonitrile-based electrolyte by Raman and infrared spectroscopy , 1996 .

[45]  M. Behboudnia,et al.  Synthesis and characterization of CdSe semiconductor nanoparticles by ultrasonic irradiation , 2007 .

[46]  Jun Li,et al.  Miniaturized multiplex label-free electronic chip for rapid nucleic acid analysis based on carbon nanotube nanoelectrode arrays. , 2004, Clinical chemistry.

[47]  Ian R. Whittall,et al.  Organometallic Complexes in Nonlinear Optics I: Second-Order Nonlinearities , 1998 .

[48]  Alexander Eychmüller,et al.  Structure and Photophysics of Semiconductor Nanocrystals , 2000 .

[49]  Erich Fitzer,et al.  Carbon fibres and their composites , 1985 .

[50]  Zhicheng Zhang,et al.  Novel one-step route for synthesizing CdS/polystyrene nanocomposite hollow spheres. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[51]  Y. Maeda,et al.  Sonochemical Preparation of Ultrafine Palladium Particles , 1996 .

[52]  R. Cai,et al.  The synthesis and characterization of C60 chemically modified poly(N-vinylcarbazole) , 1996 .

[53]  X. Meng,et al.  New Route to Incorporation of [60]Fullerene into Polymers via the Benzocyclobutenone Group , 1998 .

[54]  Su Chen,et al.  Synthesis of nanocrystal-polymer transparent hybrids via polyurethane matrix grafted onto functionalized CdS nanocrystals. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[55]  P. Prasad,et al.  Detection of trophic factor activated signaling molecules in cells by a compact fiber-optic sensor. , 2004, Biosensors & bioelectronics.

[56]  Igor L. Medintz,et al.  Enhancing the stability and biological functionalities of quantum dots via compact multifunctional ligands. , 2007, Journal of the American Chemical Society.

[57]  J. Lai,et al.  Functional Polymers from Novel Carboxyl-Terminated Trithiocarbonates as Highly Efficient RAFT Agents , 2002 .

[58]  C. Barner‐Kowollik,et al.  Poly(vinyl ester) star polymers via xanthate-mediated living radical polymerization: From poly(vinyl alcohol) to glycopolymer stars , 2005 .

[59]  S. Angus,et al.  Microgel stars viaReversible Addition Fragmentation Chain Transfer (RAFT) polymerisation — a facile route to macroporous membranes, honeycomb patterned thin films and inverse opal substrates , 2003 .

[60]  K. Suslick,et al.  Sonochemical Synthesis of Nanophase Metals, Alloys and Carbides , 1996 .

[61]  M. Prato,et al.  Chemistry of carbon nanotubes. , 2006, Chemical reviews.

[62]  Thomas P. Davis,et al.  Star polymer synthesis using trithiocarbonate functional β‐cyclodextrin cores (reversible addition–fragmentation chain‐transfer polymerization) , 2002 .