Dictionary Learning Phase Retrieval from Noisy Diffraction Patterns

This paper proposes a novel algorithm for image phase retrieval, i.e., for recovering complex-valued images from the amplitudes of noisy linear combinations (often the Fourier transform) of the sought complex images. The algorithm is developed using the alternating projection framework and is aimed to obtain high performance for heavily noisy (Poissonian or Gaussian) observations. The estimation of the target images is reformulated as a sparse regression, often termed sparse coding, in the complex domain. This is accomplished by learning a complex domain dictionary from the data it represents via matrix factorization with sparsity constraints on the code (i.e., the regression coefficients). Our algorithm, termed dictionary learning phase retrieval (DLPR), jointly learns the referred to dictionary and reconstructs the unknown target image. The effectiveness of DLPR is illustrated through experiments conducted on complex images, simulated and real, where it shows noticeable advantages over the state-of-the-art competitors.

[1]  Hans Reichenbach,et al.  Philosophic foundations of quantum mechanics , 1945 .

[2]  D. Sayre Some implications of a theorem due to Shannon , 1952 .

[3]  A. Walther The Question of Phase Retrieval in Optics , 1963 .

[4]  U. Bonse,et al.  AN X‐RAY INTERFEROMETER , 1965 .

[5]  J. Goodman Introduction to Fourier optics , 1969 .

[6]  R. Gerchberg A practical algorithm for the determination of phase from image and diffraction plane pictures , 1972 .

[7]  Mark Stefik,et al.  Inferring DNA Structures from Segmentation Data , 1978, Artif. Intell..

[8]  J R Fienup,et al.  Phase retrieval algorithms: a comparison. , 1982, Applied optics.

[9]  Rick P. Millane,et al.  Phase retrieval in crystallography and optics , 1990 .

[10]  R. Lane Phase Retrieval Using Conjugate Gradient Minimization , 1991 .

[11]  Robert W. Harrison,et al.  Phase problem in crystallography , 1993 .

[12]  Y. C. Pati,et al.  Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition , 1993, Proceedings of 27th Asilomar Conference on Signals, Systems and Computers.

[13]  Biing-Hwang Juang,et al.  Fundamentals of speech recognition , 1993, Prentice Hall signal processing series.

[14]  B Y Gu,et al.  Gerchberg-Saxton and Yang-Gu algorithms for phase retrieval in a nonunitary transform system: a comparison. , 1994, Applied optics.

[15]  A. Snigirev,et al.  On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation , 1995 .

[16]  Balas K. Natarajan,et al.  Sparse Approximate Solutions to Linear Systems , 1995, SIAM J. Comput..

[17]  S. Wilkins,et al.  Phase-contrast imaging using polychromatic hard X-rays , 1996, Nature.

[18]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[19]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[20]  G. Bianchi,et al.  The Solution of the Covariogram Problem for Plane $\mathcal{C}^2_+$ Convex Bodies , 2002 .

[21]  A. Petrakov X-ray phase-contrast method and its application to the study of blood vessels with a model object , 2003 .

[22]  K. Nugent,et al.  Unique phase recovery for nonperiodic objects. , 2003, Physical review letters.

[23]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.

[24]  Buyurmaiz Baykal,et al.  Blind channel estimation via combining autocorrelation and blind phase estimation , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[25]  J. Corbett The pauli problem, state reconstruction and quantum-real numbers , 2006 .

[26]  R. Balan,et al.  On signal reconstruction without phase , 2006 .

[27]  Karen O. Egiazarian,et al.  Image denoising with block-matching and 3D filtering , 2006, Electronic Imaging.

[28]  O. Bunk,et al.  Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources , 2006 .

[29]  Michael Elad,et al.  Image Denoising Via Sparse and Redundant Representations Over Learned Dictionaries , 2006, IEEE Transactions on Image Processing.

[30]  Alessandro Foi,et al.  Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering , 2007, IEEE Transactions on Image Processing.

[31]  G. Pedrini,et al.  Phase retrieval of arbitrary complex-valued fields through aperture-plane modulation , 2007 .

[32]  José M. Bioucas-Dias,et al.  Phase Unwrapping via Graph Cuts , 2007, IEEE Trans. Image Process..

[33]  O. Bunk,et al.  Diffractive imaging for periodic samples: retrieving one-dimensional concentration profiles across microfluidic channels. , 2007, Acta crystallographica. Section A, Foundations of crystallography.

[34]  O. Bunk,et al.  Coherent diffractive imaging using phase front modifications. , 2008, Physical review letters.

[35]  J. Miao,et al.  Extending X-ray crystallography to allow the imaging of noncrystalline materials, cells, and single protein complexes. , 2008, Annual review of physical chemistry.

[36]  Mike E. Davies,et al.  Iterative Hard Thresholding for Compressed Sensing , 2008, ArXiv.

[37]  Michael Elad,et al.  Sparse Representation for Color Image Restoration , 2008, IEEE Transactions on Image Processing.

[38]  Guillermo Sapiro,et al.  Non-local sparse models for image restoration , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[39]  Guillermo Sapiro,et al.  Online dictionary learning for sparse coding , 2009, ICML '09.

[40]  Michael Elad,et al.  Sparse and Redundant Representations - From Theory to Applications in Signal and Image Processing , 2010 .

[41]  Roummel F. Marcia,et al.  Compressed Sensing Performance Bounds Under Poisson Noise , 2009, IEEE Transactions on Signal Processing.

[42]  O. Bunk,et al.  Ptychographic X-ray computed tomography at the nanoscale , 2010, Nature.

[43]  Rebecca Willett,et al.  Sparsity-regularized photon-limited imaging , 2010, 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[44]  Philip Schniter,et al.  Expectation-maximization Bernoulli-Gaussian approximate message passing , 2011, 2011 Conference Record of the Forty Fifth Asilomar Conference on Signals, Systems and Computers (ASILOMAR).

[45]  G. Papanicolaou,et al.  Array imaging using intensity-only measurements , 2010 .

[46]  Patrick L. Combettes,et al.  Proximal Splitting Methods in Signal Processing , 2009, Fixed-Point Algorithms for Inverse Problems in Science and Engineering.

[47]  Florence Tupin,et al.  NL-InSAR: Nonlocal Interferogram Estimation , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[48]  Simon Foucart,et al.  Hard Thresholding Pursuit: An Algorithm for Compressive Sensing , 2011, SIAM J. Numer. Anal..

[49]  Tülay Adali,et al.  Complex-Valued Signal Processing: The Proper Way to Deal With Impropriety , 2011, IEEE Transactions on Signal Processing.

[50]  J. Astola,et al.  Phase retrieval via spatial light modulator phase modulation in 4f optical setup: numerical inverse imaging with sparse regularization for phase and amplitude. , 2012, Journal of the Optical Society of America. A, Optics, image science, and vision.

[51]  J. Salmon,et al.  Poisson noise reduction with non-local PCA , 2012, ICASSP.

[52]  Shin‐Tson Wu,et al.  Wiley Series in Pure and Applied Optics , 2012 .

[53]  Martin Vetterli,et al.  Phase Retrieval for Sparse Signals: Uniqueness Conditions , 2013, ArXiv.

[54]  T. Heinosaari,et al.  Quantum Tomography under Prior Information , 2011, 1109.5478.

[55]  Alain Rakotomamonjy,et al.  Applying alternating direction method of multipliers for constrained dictionary learning , 2013, Neurocomputing.

[56]  Karen O. Egiazarian,et al.  Phase imaging via sparse coding in the complex domain based on high-order svd and nonlocal BM3D techniques , 2014, 2014 IEEE International Conference on Image Processing (ICIP).

[57]  Christine Toumoulin,et al.  Dictionary learning based sinogram inpainting for CT sparse reconstruction , 2014 .

[58]  V Katkovnik,et al.  Wavefront reconstruction in phase-shifting interferometry via sparse coding of amplitude and absolute phase. , 2014, Journal of the Optical Society of America. A, Optics, image science, and vision.

[59]  Justin K. Romberg,et al.  Blind Deconvolution Using Convex Programming , 2012, IEEE Transactions on Information Theory.

[60]  Yonina C. Eldar,et al.  GESPAR: Efficient Phase Retrieval of Sparse Signals , 2013, IEEE Transactions on Signal Processing.

[61]  Mário A. T. Figueiredo,et al.  Single-frame Image Denoising and Inpainting Using Gaussian Mixtures , 2015, ICPRAM.

[62]  Yonina C. Eldar,et al.  Phase Retrieval: An Overview of Recent Developments , 2015, ArXiv.

[63]  Alexandre d'Aspremont,et al.  Phase recovery, MaxCut and complex semidefinite programming , 2012, Math. Program..

[64]  José M. Bioucas-Dias,et al.  Interferometric Phase Image Estimation via Sparse Coding in the Complex Domain , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[65]  Yuxin Chen,et al.  Solving Random Quadratic Systems of Equations Is Nearly as Easy as Solving Linear Systems , 2015, NIPS.

[66]  Shi Liu,et al.  Iterative phase retrieval algorithms. I: optimization. , 2015, Applied optics.

[67]  Zhang Fe Phase retrieval from coded diffraction patterns , 2015 .

[68]  Xiaodong Li,et al.  Phase Retrieval via Wirtinger Flow: Theory and Algorithms , 2014, IEEE Transactions on Information Theory.

[69]  Yonina C. Eldar,et al.  Phase Retrieval via Matrix Completion , 2011, SIAM Rev..

[70]  Yonina C. Eldar,et al.  DOLPHIn—Dictionary Learning for Phase Retrieval , 2016, IEEE Transactions on Signal Processing.

[71]  Bahram Javidi,et al.  Quasi noise-free digital holography , 2016, Light: Science & Applications.

[72]  Michael Unser,et al.  Proximity operators for phase retrieval. , 2016, Applied optics.

[73]  Nadine Gottschalk,et al.  Fundamentals Of Photonics , 2016 .

[74]  Karen O. Egiazarian,et al.  Sparse approximations in complex domain based on BM3D modeling , 2017, Signal Process..

[75]  J. Romberg,et al.  A flexible convex relaxation for phase retrieval , 2017 .

[76]  Babak Hassibi,et al.  Sparse Phase Retrieval: Uniqueness Guarantees and Recovery Algorithms , 2013, IEEE Transactions on Signal Processing.

[77]  Laurent Demanet,et al.  Convex Recovery From Interferometric Measurements , 2013, IEEE Transactions on Computational Imaging.

[78]  Karen O. Egiazarian,et al.  Complex-valued image denosing based on group-wise complex-domain sparsity , 2017, ArXiv.

[79]  José M. Bioucas-Dias,et al.  Patch-based Interferometric Phase Estimation via Mixture of Gaussian Density Modelling & Non-local Averaging in the Complex Domain , 2018, BMVC.

[80]  Karen O. Egiazarian,et al.  Sparse phase imaging based on complex domain nonlocal BM3D techniques , 2017, Digit. Signal Process..

[81]  Vladimir Katkovnik,et al.  Phase retrieval from noisy data based on sparse approximation of object phase and amplitude , 2017, ArXiv.

[82]  M. Davies,et al.  Improved Accuracy of Accelerated 3D T2* Mapping through Coherent Parallel Maximum Likelihood Estimation , 2018 .

[83]  Pascal Picart,et al.  Strategies for reducing speckle noise in digital holography , 2018, Light: Science & Applications.