Geometric Complexity Theory IV: Nonstandard Quantum Group for the Kronecker Problem
暂无分享,去创建一个
[1] K. V. Subrahmanyam,et al. Quantum deformations of the restriction of GLmn(C)-modules to GLm(C) × GLn(C) , 2009, ArXiv.
[2] Emmanuel Briand,et al. Quasipolynomial formulas for the Kronecker coefficients indexed by two two-row shapes (extended abstract) , 2008 .
[3] K. V. Subrahmanyam,et al. A geometric approach to the Kronecker problem I: The two row case , 2008 .
[4] J. Blasiak. $W$-graph versions of tensoring with the $\S_n$ defining representation , 2008, 0809.4810.
[5] Mike Zabrocki,et al. Expressions for Catalan Kronecker Products , 2008, 0809.3469.
[6] Ketan Mulmuley,et al. Geometric Complexity Theory II: Towards Explicit Obstructions for Embeddings among Class Varieties , 2006, SIAM J. Comput..
[7] Eric C. Rowell,et al. An algebra-level version of a link-polynomial identity of Lickorish , 2006, Mathematical Proceedings of the Cambridge Philosophical Society.
[8] Ketan Mulmuley,et al. Geometric Complexity Theory VIII: On canonical bases for the nonstandard quantum groups , 2007, ArXiv.
[9] Ketan Mulmuley,et al. Geometric Complexity Theory VII: Nonstandard quantum group for the plethysm problem , 2007, ArXiv.
[10] Ketan Mulmuley,et al. Geometric Complexity Theory IV: quantum group for the Kronecker problem , 2007, ArXiv.
[11] J. Brundan. Dual canonical bases and Kazhdan–Lusztig polynomials☆ , 2005, math/0509700.
[12] Rosa C. Orellana,et al. On the Kronecker Product s(n-p,p) * sλ , 2005, Electron. J. Comb..
[13] Arkady Berenstein,et al. Braided symmetric and exterior algebras , 2005, math/0504155.
[14] Ketan Mulmuley,et al. Geometric Complexity III: on deciding positivity of Littlewood-Richardson coefficients , 2005, ArXiv.
[15] J. Landsberg,et al. On the Ideals of Secant Varieties of Segre Varieties , 2003, Found. Comput. Math..
[16] S. Bravyi. Requirements for copatibility between local and multipartite quantum states , 2003, Quantum Inf. Comput..
[17] J. Weyman. Cohomology of Vector Bundles and Syzygies , 2003 .
[18] Jin Hong,et al. Introduction to Quantum Groups and Crystal Bases , 2002 .
[19] Ketan Mulmuley,et al. Geometric Complexity Theory I: An Approach to the P vs. NP and Related Problems , 2002, SIAM J. Comput..
[20] A. Sudbery. QUANTUM GROUPS AND THEIR REPRESENTATIONS (Texts and Monographs in Physics) , 2000 .
[21] S. Majid. Quantum groups and noncommutative geometry , 2000, hep-th/0006167.
[22] M. Rosas. The Kronecker Product of Schur Functions Indexed by Two-Row Shapes or Hook Shapes , 2000, math/0001084.
[23] K. Schmüdgen,et al. Quantum Groups and Their Representations , 1998 .
[24] G. Lehrer,et al. Cellular algebras , 1996 .
[25] Arun Ram. Seminormal Representations of Weyl Groups and Iwahori‐Hecke Algebras , 1995, math/9511223.
[26] Jeffrey B. Remmel,et al. On the Kronecker product of Schur functions of two row shapes , 1994 .
[27] Toshiki Nakashima,et al. Crystal base and a generalization of the Littlewood-Richardson rule for the classical Lie algebras , 1993 .
[28] Masatoshi Noumi,et al. Finite dimensional representations of the quantum group GL_q(n;C) and the zonal spherical functions on U_q(n-1)\U_q(n) , 1993 .
[29] Masaki Kashiwara,et al. Global crystal bases of quantum groups , 1993 .
[30] George Lusztig,et al. Introduction to Quantum Groups , 1993 .
[31] Susan Montgomery,et al. Hopf algebras and their actions on rings , 1993 .
[32] Takahiro Hayashi. Non-Existence of Homomorphisms between Quantum Groups , 1992 .
[33] G. Lusztig,et al. Canonical bases in tensor products. , 1992, Proceedings of the National Academy of Sciences of the United States of America.
[34] Arun Ram,et al. A Frobenius formula for the characters of the Hecke algebras , 1991 .
[35] William F. Schelter,et al. Quantum deformations of GLn , 1991 .
[36] R. Carter. REFLECTION GROUPS AND COXETER GROUPS (Cambridge Studies in Advanced Mathematics 29) , 1991 .
[37] M. Kashiwara,et al. On crystal bases of the $Q$-analogue of universal enveloping algebras , 1991 .
[38] N. Vilenkin,et al. Representation of Lie groups and special functions , 1991 .
[39] Nicolai Reshetikhin,et al. Multiparameter quantum groups and twisted quasitriangular Hopf algebras , 1990 .
[40] Masaki Kashiwara,et al. Crystalizing theq-analogue of universal enveloping algebras , 1990 .
[41] A. Sudbery. Consistent multiparameter quantisation of GL(n) , 1990 .
[42] George Lusztig,et al. Canonical bases arising from quantized enveloping algebras , 1990 .
[43] Jeffrey B. Remmel,et al. A formula for the Kronecker products of Schur functions of hook shapes , 1989 .
[44] S. Woronowicz,et al. Compact matrix pseudogroups , 1987 .
[45] Michio Jimbo,et al. A q-analogue of U(g[(N+1)), Hecke algebra, and the Yang-Baxter equation , 1986 .
[46] David A. Buchsbaum,et al. Schur Functors and Schur Complexes , 1982 .
[47] C. Curtis,et al. Methods of representation theory--with applications to finite groups and orders , 1981 .
[48] Irving Reiner,et al. Methods of Representation Theory , 1981 .
[49] A. Lascoux. Produit de kronecker des representations du groupe symetrique , 1980 .
[50] D. Kazhdan,et al. Representations of Coxeter groups and Hecke algebras , 1979 .
[51] I. G. MacDonald,et al. Symmetric functions and Hall polynomials , 1979 .