Adhesion and reinforcement in carbon nanotube polymer composite

Temperature dependent adhesion behavior and reinforcement in carbon nanotube (CNT)-polymer (polyethylene) composite is studied through molecular dynamics simulations. The interfacial shear stress through van der Waals interactions is found to increase linearly with applied tensile strains along the nanotube axis direction, until the noncovalent bonds between CNTs and molecules break successively. A lower bound value about 46MPa is found for the shear strength at low temperatures. Direct stress-strain calculations show significant reinforcements in the composite in a wide temperature range, with ∼200% increase in the Young’s modulus when adding 6.5% volume ratio of short CNTs, and comparisons with the Halpin–Tsai formula are discussed.

[1]  J. Coleman,et al.  Physical Mechanism for the mechanical reinforcement in nanotube-polymer composite materials , 2005 .

[2]  G. A. Tomlinson B.Sc.,et al.  CVI. A molecular theory of friction , 1929 .

[3]  O. Chauvet,et al.  Localization, Coulomb interactions, and electrical heating in single-wall carbon nanotubes/polymer composites , 2002, cond-mat/0204520.

[4]  Werner J. Blau,et al.  Reinforcement of polymers with carbon nanotubes: The role of nanotube surface area , 2004 .

[5]  J. C. H. Affdl,et al.  The Halpin-Tsai Equations: A Review , 1976 .

[6]  M. Zaiser,et al.  Interactions between polymers and carbon nanotubes: a molecular dynamics study. , 2005, The journal of physical chemistry. B.

[7]  Werner J. Blau,et al.  Experimental observation of scaling laws for alternating current and direct current conductivity in polymer-carbon nanotube composite thin films , 2002 .

[8]  Michael A. Sutton,et al.  Nanomechanical characterization of single-walled carbon nanotube reinforced epoxy composites , 2004 .

[9]  Kyeongjae Cho,et al.  Thermal Expansion and Diffusion Coefficients of Carbon Nanotube-Polymer Composites , 2002, cond-mat/0203349.

[10]  J. Tersoff,et al.  New empirical approach for the structure and energy of covalent systems. , 1988, Physical review. B, Condensed matter.

[11]  K. Lozano,et al.  Nanofiber‐reinforced thermoplastic composites. I. Thermoanalytical and mechanical analyses , 2001 .

[12]  Alexei P. Sokolov,et al.  Microscopic Mechanism of reinforcement in single-wall carbon nanotube/polypropylene nanocomposite , 2005 .

[13]  Hui Hu,et al.  Preparation of Single-Walled Carbon Nanotube Reinforced Polystyrene and Polyurethane Nanofibers and Membranes by Electrospinning , 2004 .

[14]  D. Brenner,et al.  Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. , 1990, Physical review. B, Condensed matter.

[15]  Michael Griebel,et al.  Molecular Simulation of the Influence of Chemical Cross-Links on the Shear Strength of Carbon Nanotube-Polymer Interfaces , 2002 .

[16]  Peter J. F. Harris,et al.  Carbon Nanotubes and Related Structures: New Materials for the Twenty-first Century , 1999 .

[17]  M. Radosavljevic,et al.  Carbon nanotube composites for thermal management , 2002, cond-mat/0205418.

[18]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[19]  K. Liao,et al.  Interfacial characteristics of a carbon nanotube–polystyrene composite system , 2001 .

[20]  Sidney R. Cohen,et al.  Measurement of carbon nanotube-polymer interfacial strength , 2003 .

[21]  D. Srivastava,et al.  Structural Ordering in Nanotube Polymer Composites , 2004 .

[22]  Reshef Tenne,et al.  Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix , 1998 .