Olefinepoxidierung mit Methyltrioxorhenium: eine Dichtefunktionalstudie zu Energetik und Mechanismen

Der Angriff des Olefins auf eine Peroxogruppe unter Bildung eines Spiroubergangszustands ist theoretischen Untersuchungen zufolge bei der Epoxidierung von Olefinen mit dem Katalysatorsystem CH3ReO3/H2O2 bevorzugt (siehe Bild). Dieser Befund wird durch Dichtefunktionalrechnungen an mehr als zehn Ubergangszustanden der wahrscheinlichsten Mechanismen gestutzt. Die Hydratisierung hat einen bedeutenden Einflus auf mehrere an der Reaktion beteiligte Spezies: Sie stabilisiert Intermediate und destabilisiert, von einer Ausnahme abgesehen, die Ubergangszustande.

[1]  M. Glukhovtsev,et al.  On the Origin of Substrate Directing Effects in the Epoxidation of Allyl Alcohols with Peroxyformic Acid , 1998 .

[2]  W. Herrmann,et al.  Rhenium(VII) Oxo and Imido Complexes: Synthesis, Structures, and Applications. , 1997, Chemical reviews.

[3]  A. Yudin,et al.  Bis(trimethylsilyl) Peroxide Extends the Range of Oxorhenium Catalysts for Olefin Epoxidation , 1997 .

[4]  N. Rösch,et al.  Lewis Acidity and Reactivity of Transition Metal Oxo Complexes. A Comparative Density Functional Study of CH3ReO3, CH3TcO3, and Their Base Adducts , 1997 .

[5]  K. Houk,et al.  Experimental Geometry of the Epoxidation Transition State , 1997 .

[6]  H. Kwong,et al.  Toward an understanding of the high enantioselectivity in the osmium-catalyzed asymmetric dihydroxylation. 4. Electronic effects in amine-accelerated osmylations , 1997 .

[7]  M. Solà,et al.  Density Functional Study of the [2+2]- and [2+3]-Cycloaddition Mechanisms for the Osmium-Catalyzed Dihydroxylation of Olefins , 1997 .

[8]  G. Frenking,et al.  Theoretische Untersuchungen schließen eine [2 + 2]-Addition als einleitenden Schritt der Osmiumtetroxid-katalysierten Dihydroxylierung von Alkenen aus† , 1996 .

[9]  G. Frenking,et al.  Theory Rules Out a [2 + 2] Addition of Osmium Tetroxide to Olefins as Initial Step of the Dihydroxylation Reaction , 1996 .

[10]  K. Morokuma,et al.  Theory Does Not Support an Osmaoxetane Intermediate in the Osmium-Catalyzed Dihydroxylation of Olefins , 1996 .

[11]  A. Al-Ajlouni,et al.  Kinetics and Mechanism of the Epoxidation of Alkyl-Substituted Alkenes by Hydrogen Peroxide, Catalyzed by Methylrhenium Trioxide. , 1996, The Journal of organic chemistry.

[12]  N. Rösch,et al.  STRUCTURE AND PROPERTIES OF DIMER, TRIMER AND TETRAMER AGGREGATES OF METHYLTRIOXORHENIUM(MTO) : AN AB INITIO STUDY , 1996 .

[13]  W. Thiel Metal-Catalyzed Oxidations, 4. The Reaction of Molybdenumperoxo Complexes with Brønsted and Lewis Acids† , 1996 .

[14]  N. Rösch,et al.  Density Functional Study on the Electronic Structure of Trioxorhenium Organyls , 1996 .

[15]  E. Corey,et al.  Kinetic Investigations Provide Additional Evidence That an Enzyme-like Binding Pocket Is Crucial for High Enantioselectivity in the Bis-Cinchona Alkaloid Catalyzed Asymmetric Dihydroxylation of Olefins , 1996 .

[16]  W. Herrmann Essays on organometallic chemistry, VII. Laboratory curiosities of yesterday, catalysts of tomorrow: organometallic oxides , 1995 .

[17]  Yun-Dong Wu,et al.  TRANSITION STRUCTURE FOR THE EPOXIDATION MEDIATED BY TITANIUM(IV) PEROXIDE - A DENSITY-FUNCTIONAL STUDY , 1995 .

[18]  M. VanNieuwenhze,et al.  Catalytic Asymmetric Dihydroxylation , 1994 .

[19]  W. Herrmann,et al.  Methyltrioxorhenium(VII) als Epoxidationskatalysator: Struktur der aktiven Spezies und Katalysemechanismus†‡ , 1993 .

[20]  W. Herrmann,et al.  Methyltrioxorhenium(VII) as Catalyst for Epoxidations: Structure of the Active Species and Mechanism of Catalysis , 1993 .

[21]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[22]  H. Bernhard Schlegel,et al.  Reaction Path Following in Mass-Weighted Internal Coordinates , 1990 .

[23]  P. Schwerdtfeger,et al.  Theoretische Betrachtungen über die Stabilität der Trioxo(η5‐cyclopentadienyl)‐Verbindungen der Übergangsmetalle Mangan, Technetium und Rhenium , 1989 .

[24]  T. Szyperski,et al.  On the Stability of Trioxo(η5 ‐Cyclopentadienyl) Compounds of Manganese, Technetium, and Rhenium : An ab initio SCF Study , 1989 .

[25]  K. A. Joergensen Transition-metal-catalyzed epoxidations , 1989 .

[26]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[27]  A. D. McLean,et al.  Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11–18 , 1980 .

[28]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals , 1985 .

[29]  J. Pople,et al.  Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions , 1980 .

[30]  L. Sajus,et al.  Epoxydation des olefines par les complexes peroxydiques covalents du molybdene—VI , 1970 .