Biocatalysis with Unnatural Amino Acids: Enzymology Meets Xenobiology.

The goal of xenobiology is to design biological systems endowed with unusual biochemical functions, whereas enzymology concerns the study of enzymes, the workhorses of biocatalysis. Biocatalysis employs enzymes and organisms to perform useful biotransformations in synthetic chemistry and biotechnology. During the past few years, the effects of incorporating noncanonical amino acids (ncAAs) into enzymes with potential applications in biocatalysis have been increasingly investigated. In this Review, we provide an overview of the effects of new chemical functionalities that have been introduced into proteins to improve various facets of enzymatic catalysis. We also discuss future research avenues that will complement unnatural mutagenesis with standard protein engineering to produce novel and versatile biocatalysts with applications in synthetic organic chemistry and biotechnology.

[1]  P. Hildebrandt,et al.  Catalytic efficiency of dehaloperoxidase A is controlled by electrostatics--application of the vibrational Stark effect to understand enzyme kinetics. , 2013, Biochemical and biophysical research communications.

[2]  Manfred T Reetz,et al.  Directed evolution of enantioselective enzymes: iterative cycles of CASTing for probing protein-sequence space. , 2006, Angewandte Chemie.

[3]  J. Montclare,et al.  Influence of global fluorination on chloramphenicol acetyltransferase activity and stability , 2006, Biotechnology and bioengineering.

[4]  Jennifer A. Prescher,et al.  Orthogonal bioorthogonal chemistries. , 2015, Current opinion in chemical biology.

[5]  R. Huber,et al.  Toward the experimental codon reassignment in vivo: protein building with an expanded amino acid repertoire , 1999, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[6]  Peter G Schultz,et al.  Protein evolution with an expanded genetic code , 2008, Proceedings of the National Academy of Sciences.

[7]  Sun-Gu Lee,et al.  Engineering Protein Sequence Composition for Folding Robustness Renders Efficient Noncanonical Amino acid Incorporations , 2010, Chembiochem : a European journal of chemical biology.

[8]  Dieter Söll,et al.  Chemical Evolution of a Bacterial Proteome. , 2015, Angewandte Chemie.

[9]  K. Shahani,et al.  Application of Lipolytic Enzymes to Flavor Development in Dairy Products , 1975 .

[10]  Carlo P Ramil,et al.  Photoclick chemistry: a fluorogenic light-triggered in vivo ligation reaction. , 2014, Current opinion in chemical biology.

[11]  D. Tirrell,et al.  Reassignment of sense codons in vivo. , 2005, Methods.

[12]  M. Meijler,et al.  Surface display of a redox enzyme and its site-specific wiring to gold electrodes. , 2013, Journal of the American Chemical Society.

[13]  Andrew B. Martin,et al.  Generation of a bacterium with a 21 amino acid genetic code. , 2003, Journal of the American Chemical Society.

[14]  C. M. Dupureur,et al.  Differential effects of isomeric incorporation of fluorophenylalanines into PvuII endonuclease , 2001, Proteins.

[15]  P. Schultz,et al.  Site-specific PEGylation of proteins containing unnatural amino acids. , 2004, Bioorganic & medicinal chemistry letters.

[16]  D. Söll,et al.  Exploring the Substrate Range of Wild‐Type Aminoacyl‐tRNA Synthetases , 2014, Chembiochem : a European journal of chemical biology.

[17]  W. Stemmer Rapid evolution of a protein in vitro by DNA shuffling , 1994, Nature.

[18]  Farren J. Isaacs,et al.  Recoded organisms engineered to depend on synthetic amino acids , 2015, Nature.

[19]  Ji-ti Zhou,et al.  The Escherichia coli Azoreductase AzoR Is Involved in Resistance to Thiol-Specific Stress Caused by Electrophilic Quinones , 2009, Journal of bacteriology.

[20]  Jennifer A. Prescher,et al.  Finding the right (bioorthogonal) chemistry. , 2014, ACS chemical biology.

[21]  Carlos G. Acevedo-Rocha,et al.  biological tool for lipase-catalysed reactions in hostile environments† , 2013 .

[22]  J. Wong,et al.  Evolutionary relationship between Halobacterium cutirubrum and eukaryotes determined by use of aminoacyl-tRNA synthetases as phylogenetic probes. , 1980, Canadian journal of biochemistry.

[23]  Yong Hwan Kim,et al.  Site-Specific Bioconjugation of a Murine Dihydrofolate Reductase Enzyme by Copper(I)-Catalyzed Azide-Alkyne Cycloaddition with Retained Activity , 2014, PloS one.

[24]  R C Cox,et al.  Incorporation of an unnatural amino acid in the active site of porcine pancreatic phospholipase A2. Substitution of histidine by 1,2,4-triazole-3-alanine yields an enzyme with high activity at acidic pH. , 1996, Protein engineering.

[25]  Dieter Söll,et al.  Evolution of translation machinery in recoded bacteria enables multi-site incorporation of nonstandard amino acids , 2015, Nature Biotechnology.

[26]  Thomas Lavergne,et al.  A Semi-Synthetic Organism with an Expanded Genetic Alphabet , 2014, Nature.

[27]  W. Hendrickson Determination of macromolecular structures from anomalous diffraction of synchrotron radiation. , 1991, Science.

[28]  Víctor de Lorenzo,et al.  Synthetic constructs in/for the environment: Managing the interplay between natural and engineered Biology , 2012, FEBS Letters.

[29]  A James Link,et al.  Non-canonical amino acids in protein engineering. , 2003, Current opinion in biotechnology.

[30]  D. D. Jones,et al.  Expanded chemical diversity sampling through whole protein evolution. , 2009, Molecular bioSystems.

[31]  Nediljko Budisa,et al.  Azatryptophans endow proteins with intrinsic blue fluorescence , 2008, Proceedings of the National Academy of Sciences.

[32]  Jin Kim Montclare,et al.  Evolving proteins of novel composition. , 2006, Angewandte Chemie.

[33]  G L Gilliland,et al.  Enzymes harboring unnatural amino acids: mechanistic and structural analysis of the enhanced catalytic activity of a glutathione transferase containing 5-fluorotryptophan. , 1998, Biochemistry.

[34]  P. Schultz,et al.  Genetic incorporation of a metal-ion chelating amino acid into proteins as a biophysical probe. , 2009, Journal of the American Chemical Society.

[35]  P. Schultz,et al.  A genetically encoded infrared probe. , 2006, Journal of the American Chemical Society.

[36]  Víctor de Lorenzo,et al.  Synthetic bugs on the loose: containment options for deeply engineered (micro)organisms. , 2016, Current opinion in biotechnology.

[37]  Inchan Kwon,et al.  Controlling enzyme inhibition using an expanded set of genetically encoded amino acids , 2013, Biotechnology and bioengineering.

[38]  M. J. Tucker,et al.  Ester carbonyl vibration as a sensitive probe of protein local electric field. , 2014, Angewandte Chemie.

[39]  M. Alam,et al.  Solvent tolerant lipases: A review , 2015 .

[41]  J. Chin,et al.  Expanding the genetic code of Drosophila melanogaster. , 2012, Nature chemical biology.

[42]  S. Varfolomeyev,et al.  Insertion of an unnatural amino acid into the protein structure: preparation and properties of 3-fluorotyrosine-containing organophosphate hydrolase , 2006 .

[43]  Markus Grammel,et al.  Chemical reporters for biological discovery. , 2013, Nature chemical biology.

[44]  N. Budisa,et al.  Azatryptophans as tools to study polarity requirements for folding of green fluorescent protein , 2010, Journal of peptide science : an official publication of the European Peptide Society.

[45]  Manfred T Reetz,et al.  Directed evolution of stereoselective enzymes based on genetic selection as opposed to screening systems. , 2014, Journal of biotechnology.

[46]  J. Fox,et al.  trans-Cyclooctene--a stable, voracious dienophile for bioorthogonal labeling. , 2013, Current opinion in chemical biology.

[47]  Floyd E Romesberg,et al.  Beyond A, C, G and T: augmenting nature's alphabet. , 2003, Current opinion in chemical biology.

[48]  A. Glieder,et al.  Monooxygenases as biocatalysts: Classification, mechanistic aspects and biotechnological applications. , 2010, Journal of biotechnology.

[49]  Rudi Fasan,et al.  Enhancing the Efficiency and Regioselectivity of P450 Oxidation Catalysts by Unnatural Amino Acid Mutagenesis , 2014, Chembiochem : a European journal of chemical biology.

[50]  Yan Zhang,et al.  Pyrrolysine and Selenocysteine Use Dissimilar Decoding Strategies* , 2005, Journal of Biological Chemistry.

[51]  Arieh Warshel,et al.  Electrostatic contributions to protein stability and folding energy , 2007, FEBS letters.

[52]  Susan E. Cellitti,et al.  Efforts toward the direct experimental characterization of enzyme microenvironments: tyrosine100 in dihydrofolate reductase. , 2009, Angewandte Chemie.

[53]  Colin J Jackson,et al.  Improving a natural enzyme activity through incorporation of unnatural amino acids. , 2011, Journal of the American Chemical Society.

[54]  Arjun Ravikumar,et al.  Biocontainment through Reengineered Genetic Codes , 2015, Chembiochem : a European journal of chemical biology.

[55]  Jason W. Chin,et al.  Designer proteins: applications of genetic code expansion in cell biology , 2012, Nature Reviews Molecular Cell Biology.

[56]  W. Stemmer DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[57]  Wei Zhang,et al.  Probing the function of the Tyr-Cys cross-link in metalloenzymes by the genetic incorporation of 3-methylthiotyrosine. , 2013, Angewandte Chemie.

[58]  Byung-Gee Kim,et al.  Engineering Transaminase for Stability Enhancement and Site‐Specific Immobilization through Multiple Noncanonical Amino Acids Incorporation , 2015 .

[59]  Peter G Schultz,et al.  Adding new chemistries to the genetic code. , 2010, Annual review of biochemistry.

[60]  N. Budisa,et al.  Expanding and engineering the genetic code in a single expression experiment. , 2011, Chembiochem : a European journal of chemical biology.

[61]  Hyungdon Yun,et al.  Incorporating unnatural amino acids to engineer biocatalysts for industrial bioprocess applications , 2015, Biotechnology journal.

[62]  N. Devaraj,et al.  Expanding room for tetrazine ligations in the in vivo chemistry toolbox. , 2013, Current Opinion in Chemical Biology.

[63]  P. Hildebrandt,et al.  Electric-field effects on the interfacial electron transfer and protein dynamics of cytochrome c , 2011 .

[64]  B. G. Davis,et al.  Chemical modification of proteins at cysteine: opportunities in chemistry and biology. , 2009, Chemistry, an Asian journal.

[65]  J. Wong,et al.  Membership mutation of the genetic code: loss of fitness by tryptophan. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[66]  W. Gong,et al.  Genetic incorporation of a metal-chelating amino acid as a probe for protein electron transfer. , 2012, Angewandte Chemie.

[67]  A. Warshel,et al.  Electrostatic basis for enzyme catalysis. , 2006, Chemical reviews.

[68]  G. Church,et al.  Overcoming Challenges in Engineering the Genetic Code. , 2016, Journal of molecular biology.

[69]  G. Huisman,et al.  Engineering the third wave of biocatalysis , 2012, Nature.

[70]  E. Reisner,et al.  Photocatalytic Hydrogen Evolution with a Hydrogenase in a Mediator-Free System under High Levels of Oxygen** , 2013, Angewandte Chemie.

[71]  Jason J. Lavinder,et al.  Synthetic approach to stop-codon scanning mutagenesis. , 2011, Journal of the American Chemical Society.

[72]  P. Schultz,et al.  Beyond the Canonical 20 Amino Acids: Expanding the Genetic Lexicon* , 2010, The Journal of Biological Chemistry.

[73]  Jennifer A. Prescher,et al.  Chemistry in living systems , 2005, Nature chemical biology.

[74]  A. Ghanem,et al.  Application of lipases in kinetic resolution of racemates. , 2005, Chirality.

[75]  N. Budisa Prolegomena zum experimentellen Engineering des genetischen Codes durch Erweiterung seines Aminosäurerepertoires , 2004 .

[76]  Thomas R Ward,et al.  Merging the best of two worlds: artificial metalloenzymes for enantioselective catalysis. , 2011, Chemical communications.

[77]  W A Hendrickson,et al.  Selenomethionyl proteins produced for analysis by multiwavelength anomalous diffraction (MAD): a vehicle for direct determination of three‐dimensional structure. , 1990, The EMBO journal.

[78]  Markus Schmidt,et al.  Xenobiology: A new form of life as the ultimate biosafety tool , 2010, BioEssays : news and reviews in molecular, cellular and developmental biology.

[79]  Inchan Kwon,et al.  Forced Ambiguity of the Leucine Codons for Multiple-Site-Specific Incorporation of a Noncanonical Amino Acid , 2016, PloS one.

[80]  S. Boxer,et al.  Extreme electric fields power catalysis in the active site of ketosteroid isomerase , 2014, Science.

[81]  S. Panke,et al.  Design of S‐Allylcysteine in Situ Production and Incorporation Based on a Novel Pyrrolysyl‐tRNA Synthetase Variant , 2017, Chembiochem : a European journal of chemical biology.

[82]  G. Cohen,et al.  Biosynthesis by Escherichia coli of active altered proteins containing selenium instead of sulfur. , 1957, Biochimica et biophysica acta.

[83]  Philippe Marliere,et al.  The farther, the safer: a manifesto for securely navigating synthetic species away from the old living world , 2009, Systems and Synthetic Biology.

[84]  Yi Lu,et al.  Significant improvement of oxidase activity through the genetic incorporation of a redox-active unnatural amino acid , 2015, Chemical science.

[85]  Jack W. Szostak,et al.  An Expanded Set of Amino Acid Analogs for the Ribosomal Translation of Unnatural Peptides , 2007, PloS one.

[86]  Hua Guo,et al.  Contributions of long-range electrostatic interactions to 4-chlorobenzoyl-CoA dehalogenase catalysis: a combined theoretical and experimental study. , 2006, Biochemistry.

[87]  Manfred T Reetz,et al.  Regio- and stereoselectivity of P450-catalysed hydroxylation of steroids controlled by laboratory evolution , 2011, Nature Chemistry.

[88]  C. Ahern,et al.  Unnatural amino acids as probes of ligand-receptor interactions and their conformational consequences. , 2013, Annual review of pharmacology and toxicology.

[89]  J. Chin,et al.  Expanding the Genetic Code of an Animal , 2011, Journal of the American Chemical Society.

[90]  D. Söll,et al.  Distinct genetic code expansion strategies for selenocysteine and pyrrolysine are reflected in different aminoacyl‐tRNA formation systems , 2010, FEBS letters.

[91]  Dieter Söll,et al.  Genetic code flexibility in microorganisms: novel mechanisms and impact on physiology , 2015, Nature Reviews Microbiology.

[92]  A. Kiener,et al.  Industrial biocatalysis today and tomorrow , 2001, Nature.

[93]  U. Bornscheuer,et al.  Directed evolution of an esterase for the stereoselective resolution of a key intermediate in the synthesis of epothilones. , 1998, Biotechnology and bioengineering.

[94]  L. Sedlaczek,et al.  Biotransformations of steroids. , 1988, Critical reviews in biotechnology.

[95]  N. Budisa,et al.  Towards Biocontained Cell Factories: An Evolutionarily Adapted Escherichia coli Strain Produces a New-to-nature Bioactive Lantibiotic Containing Thienopyrrole-Alanine , 2016, Scientific Reports.

[96]  W. DeGrado,et al.  Using nitrile-derivatized amino acids as infrared probes of local environment. , 2003, Journal of the American Chemical Society.

[97]  J. Plotkin,et al.  Synonymous but not the same: the causes and consequences of codon bias , 2011, Nature Reviews Genetics.

[98]  Thomas E. Gorochowski,et al.  Trade-offs between tRNA abundance and mRNA secondary structure support smoothing of translation elongation rate , 2015, Nucleic acids research.

[99]  M. T. Reetz Gerichtete Evolution stereoselektiver Enzyme: Eine ergiebige Katalysator-Quelle f r asymmetrische Reaktionen , 2011 .

[100]  N. Budisa Xenobiology, New-to-Nature Synthetic Cells and Genetic Firewall , 2014 .

[101]  Yi Lu,et al.  An engineered azurin variant containing a selenocysteine copper ligand. , 2002, Journal of the American Chemical Society.

[102]  Nediljko Budisa,et al.  Residue-specific global fluorination of Candida antarctica lipase B in Pichia pastoris. , 2010, Molecular bioSystems.

[103]  A. Yamaguchi,et al.  Protein stabilization utilizing a redefined codon , 2015, Scientific Reports.

[104]  N. Budisa,et al.  Orthogonal Translation Meets Electron Transfer: In Vivo Labeling of Cytochrome c for Probing Local Electric Fields , 2015, Chembiochem : a European journal of chemical biology.

[105]  S. Boxer,et al.  Measuring electric fields and noncovalent interactions using the vibrational stark effect. , 2015, Accounts of chemical research.

[106]  Aza-dibenzocyclooctynes for fast and efficient enzyme PEGylation via copper-free (3+2) cycloaddition. , 2010, Chemical communications.

[107]  Karl-Erich Jaeger,et al.  Lipases for biotechnology. , 2002, Current opinion in biotechnology.

[108]  P. Schultz,et al.  Exploring the potential impact of an expanded genetic code on protein function , 2015, Proceedings of the National Academy of Sciences.

[109]  M. Rubini,et al.  A highly active DNA polymerase with a fluorous core. , 2010, Angewandte Chemie.

[110]  F. Arnold,et al.  Tuning the activity of an enzyme for unusual environments: sequential random mutagenesis of subtilisin E for catalysis in dimethylformamide. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[111]  N. Budisa,et al.  Energetic contribution to both acidity and conformational stability in peptide models , 2016 .

[112]  R. Vazquez-Duhalt,et al.  Cytochrome c as a biocatalyst , 1999 .

[113]  Nediljko Budisa,et al.  Xenomicrobiology: a roadmap for genetic code engineering , 2016, Microbial biotechnology.

[114]  Christopher D Spicer,et al.  Selective chemical protein modification , 2014, Nature Communications.

[115]  Uwe T. Bornscheuer,et al.  Biocatalytic Routes to Optically Active Amines , 2009 .

[116]  J. V. van Hest,et al.  "Clickable" elastins: elastin-like polypeptides functionalized with azide or alkyne groups. , 2009, Chemical communications.

[117]  Wei Zhang,et al.  Significant increase of oxidase activity through the genetic incorporation of a tyrosine-histidine cross-link in a myoglobin model of heme-copper oxidase. , 2012, Angewandte Chemie.

[118]  V. Pande,et al.  Electric Fields at the Active Site of an Enzyme: Direct Comparison of Experiment with Theory , 2006, Science.

[119]  Jin Kim Montclare,et al.  Enhanced Refoldability and Thermoactivity of Fluorinated Phosphotriesterase , 2011, Chembiochem : a European journal of chemical biology.

[120]  Ryo Takeuchi,et al.  Biocontainment of genetically modified organisms by synthetic protein design , 2015, Nature.

[121]  P. Schultz,et al.  Evolution of Iron(II)‐Finger Peptides by Using a Bipyridyl Amino Acid , 2014, Chembiochem : a European journal of chemical biology.

[122]  K. Kirshenbaum,et al.  Breaking the degeneracy of the genetic code. , 2003, Journal of the American Chemical Society.

[123]  M. Debets,et al.  Azide: A Unique Dipole for Metal‐Free Bioorthogonal Ligations , 2010, Chembiochem : a European journal of chemical biology.

[124]  J. Chin,et al.  Genetic encoding of unnatural amino acids for labeling proteins. , 2015, Methods in molecular biology.

[125]  U. Bornscheuer,et al.  Creation of a lipase highly selective for trans fatty acids by protein engineering. , 2012, Angewandte Chemie.

[126]  Anna F. A. Peacock,et al.  De Novo Design of Xeno-Metallo Coiled Coils. , 2016, Chemistry, an Asian journal.

[127]  R. Huber,et al.  Atomic mutations in annexin V--thermodynamic studies of isomorphous protein variants. , 1998, European journal of biochemistry.

[128]  Robert Huber,et al.  Expansion of the genetic code enables design of a novel "gold" class of green fluorescent proteins. , 2003, Journal of molecular biology.

[129]  T. Cropp,et al.  A general method for scanning unnatural amino acid mutagenesis. , 2009, ACS chemical biology.

[130]  Alexander Bartholomäus,et al.  Secondary Structure across the Bacterial Transcriptome Reveals Versatile Roles in mRNA Regulation and Function , 2015, PLoS genetics.

[131]  Matthew D. Schultz,et al.  RF1 Knockout Allows Ribosomal Incorporation of Unnatural Amino Acids at Multiple Sites , 2011, Nature chemical biology.

[132]  Peter G. Schultz,et al.  Expanding the genetic code. , 2006 .

[133]  R. Huber,et al.  Design of anti- and pro-aggregation variants to assess the effects of methionine oxidation in human prion protein , 2009, Proceedings of the National Academy of Sciences.

[134]  N. Budisa,et al.  Sense codon emancipation for proteome-wide incorporation of noncanonical amino acids: rare isoleucine codon AUA as a target for genetic code expansion , 2014, FEMS microbiology letters.

[135]  Nediljko Budisa,et al.  In vivo incorporation of multiple noncanonical amino acids into proteins. , 2011, Angewandte Chemie.

[136]  S. Boxer,et al.  A Critical Test of the Electrostatic Contribution to Catalysis with Noncanonical Amino Acids in Ketosteroid Isomerase. , 2016, Journal of the American Chemical Society.

[137]  A. Marx,et al.  Hochaktive DNA‐Polymerase mit einem fluorigen Kern , 2010 .

[138]  V. Brecht,et al.  Carboxylation mechanism and stereochemistry of crotonyl-CoA carboxylase/reductase, a carboxylating enoyl-thioester reductase , 2009, Proceedings of the National Academy of Sciences.

[139]  Carlos G. Acevedo-Rocha,et al.  Auf dem Weg zu chemisch veränderten Organismen mit genetischer Firewall , 2011 .

[140]  Nediljko Budisa,et al.  Coupling Bioorthogonal Chemistries with Artificial Metabolism: Intracellular Biosynthesis of Azidohomoalanine and Its Incorporation into Recombinant Proteins , 2014, Molecules.

[141]  Donald Hilvert,et al.  A Chemically Programmed Proximal Ligand Enhances the Catalytic Properties of a Heme Enzyme. , 2016, Journal of the American Chemical Society.

[142]  Donald Hilvert,et al.  Biocatalysts by evolution. , 2010, Current opinion in biotechnology.

[143]  N. Budisa,et al.  Doppelte und dreifache In‐vivo‐Funktionalisierung von Proteinen mit synthetischen Aminosäuren , 2010 .

[144]  Francis B. Peters,et al.  Genetic Incorporation of Histidine Derivatives Using an Engineered Pyrrolysyl-tRNA Synthetase , 2014, ACS chemical biology.

[145]  J. V. van Hest,et al.  Site-specific modification of Candida antarctica lipase B via residue-specific incorporation of a non-canonical amino acid. , 2008, Bioconjugate chemistry.

[146]  Bernhard Hauer,et al.  New generation of biocatalysts for organic synthesis. , 2014, Angewandte Chemie.

[147]  R. Lindberg,et al.  Alteration of mouse cytochrome P450coh substrate specificity by mutation of a single amino-acid residue , 1989, Nature.

[148]  P. Díaz,et al.  Combining phospholipases and a liquid lipase for one-step biodiesel production using crude oils , 2014, Biotechnology for Biofuels.

[149]  Yi Lu,et al.  Defining the Role of Tyrosine and Rational Tuning of Oxidase Activity by Genetic Incorporation of Unnatural Tyrosine Analogs , 2015, Journal of the American Chemical Society.

[150]  U. Bornscheuer,et al.  Erzeugung einer für trans‐Fettsäuren hochselektiven Lipase durch Protein‐Engineering , 2012 .

[151]  Eric A. Althoff,et al.  Kemp elimination catalysts by computational enzyme design , 2008, Nature.

[152]  P. Marlière,et al.  A Metabolic Prototype for Eliminating Tryptophan From The Genetic Code , 2013, Scientific Reports.

[153]  R. Huber,et al.  Towards New Protein Engineering: In Vivo Building and Folding of Protein Shuttles for Drug Delivery and Targeting by the Selective Pressure Incorporation (SPI) Method , 2000 .

[154]  A. Gutiérrez,et al.  The biotechnological control of pitch in paper pulp manufacturing. , 2001, Trends in biotechnology.

[155]  Huimin Zhao,et al.  Improving and repurposing biocatalysts via directed evolution. , 2015, Current opinion in chemical biology.

[156]  J. Stuckey,et al.  Structural basis for the enhanced stability of highly fluorinated proteins , 2012, Proceedings of the National Academy of Sciences.

[157]  Yi Cao,et al.  Single molecule evidence for the adaptive binding of DOPA to different wet surfaces. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[158]  Gheorghe-Doru Roiban,et al.  Expanding the toolbox of organic chemists: directed evolution of P450 monooxygenases as catalysts in regio- and stereoselective oxidative hydroxylation. , 2015, Chemical communications.

[159]  T. Tan,et al.  Biodiesel production with immobilized lipase: A review. , 2010, Biotechnology advances.

[160]  Sylvie Garneau-Tsodikova,et al.  Protein posttranslational modifications: the chemistry of proteome diversifications. , 2005, Angewandte Chemie.

[161]  J. Dawson,et al.  Heme-Containing Oxygenases. , 1996, Chemical reviews.

[162]  R. Huber,et al.  Structural and spectral response of Aequorea victoria green fluorescent proteins to chromophore fluorination. , 2005, Biochemistry.

[163]  K. Kirk,et al.  In vitro and in vivo studies of the effects of halogenated histidine analogs on Plasmodium falciparum , 1988, Antimicrobial Agents and Chemotherapy.

[164]  Ryan A Mehl,et al.  Improving nature's enzyme active site with genetically encoded unnatural amino acids. , 2006, Journal of the American Chemical Society.

[165]  Carlos G. Acevedo-Rocha,et al.  On the road towards chemically modified organisms endowed with a genetic firewall. , 2011, Angewandte Chemie.

[166]  P. Schultz,et al.  An evolved aminoacyl-tRNA synthetase with atypical polysubstrate specificity. , 2011, Biochemistry.

[167]  Manfred T Reetz,et al.  Laboratory evolution of stereoselective enzymes: a prolific source of catalysts for asymmetric reactions. , 2011, Angewandte Chemie.

[168]  Gonçalo J L Bernardes,et al.  Advances in chemical protein modification. , 2015, Chemical reviews.

[169]  N. Budisa,et al.  Paralleler In‐vivo‐Einbau von mehreren nichtkanonischen Aminosäuren in Proteine , 2011 .

[170]  R. Huber,et al.  Atomic mutations at the single tryptophan residue of human recombinant annexin V: effects on structure, stability, and activity. , 1999, Biochemistry.

[171]  Vlada B Urlacher,et al.  Cytochrome P450 monooxygenases: an update on perspectives for synthetic application. , 2012, Trends in biotechnology.

[172]  Luke G Green,et al.  A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective "ligation" of azides and terminal alkynes. , 2002, Angewandte Chemie.

[173]  T. Steitz,et al.  Polyspecific pyrrolysyl-tRNA synthetases from directed evolution , 2014, Proceedings of the National Academy of Sciences.

[174]  T. Holak,et al.  Slow exchange in the chromophore of a green fluorescent protein variant. , 2002, Journal of the American Chemical Society.

[175]  N. Budisa,et al.  In vivo double and triple labeling of proteins using synthetic amino acids. , 2010, Angewandte Chemie.

[176]  Frances H Arnold,et al.  Expanding the enzyme universe: accessing non-natural reactions by mechanism-guided directed evolution. , 2015, Angewandte Chemie.

[177]  Hans Renata,et al.  Ausdehnung des Enzym‐Universums: Zugang zu nicht‐natürlichen Reaktionen durch mechanismusgeleitete, gerichtete Evolution , 2015 .

[178]  P. Schultz,et al.  Site-specific incorporation of biophysical probes into proteins. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[179]  R. Radford Expanding the Utility of Proteins as Platforms for Coordination Chemistry , 2011 .

[180]  Peter G. Schultz,et al.  Genomically Recoded Organisms Expand Biological Functions , 2013, Science.

[181]  S. Hammer,et al.  Biokatalysatoren für die organische Synthese – die neue Generation , 2014 .

[182]  Nediljko Budisa,et al.  Prolegomena to future experimental efforts on genetic code engineering by expanding its amino acid repertoire. , 2004, Angewandte Chemie.

[183]  J. Lorsch Practical steady-state enzyme kinetics. , 2014, Methods in enzymology.

[184]  P. Schultz,et al.  Two-dimensional IR spectroscopy of protein dynamics using two vibrational labels: a site-specific genetically encoded unnatural amino acid and an active site ligand. , 2011, The journal of physical chemistry. B.

[185]  Dong Wook Kim,et al.  Genetic incorporation of unnatural amino acids biosynthesized from α-keto acids by an aminotransferase , 2014 .

[186]  Roeland J. M. Nolte,et al.  A Block Copolymer for Functionalisation of Polymersome Surfaces , 2008 .

[187]  Carlos G. Acevedo-Rocha,et al.  Lipase Congeners Designed by Genetic Code Engineering , 2011 .

[188]  Michael G. Hill,et al.  RATIONAL FINE-TUNING OF THE REDOX POTENTIALS IN CHEMICALLY SYNTHESIZED RUBREDOXINS , 1998 .

[189]  Eric A. Althoff,et al.  De Novo Computational Design of Retro-Aldol Enzymes , 2008, Science.

[190]  Erik A. Rodriguez,et al.  Improved amber and opal suppressor tRNAs for incorporation of unnatural amino acids in vivo. Part 1: minimizing misacylation. , 2007, RNA.

[191]  Palanisamy Thanikaivelan,et al.  Progress and recent trends in biotechnological methods for leather processing. , 2004, Trends in biotechnology.

[192]  Frances H Arnold,et al.  Global incorporation of norleucine in place of methionine in cytochrome P450 BM‐3 heme domain increases peroxygenase activity , 2003, Biotechnology and bioengineering.

[193]  Nediljko Budisa,et al.  Recent advances in genetic code engineering in Escherichia coli. , 2012, Current opinion in biotechnology.

[194]  N. Budisa,et al.  In vivo engineering of proteins with nitrogen-containing tryptophan analogs , 2006, Applied Microbiology and Biotechnology.

[195]  J. Goddard,et al.  Covalent immobilization of lysozyme on ethylene vinyl alcohol films for nonmigrating antimicrobial packaging applications. , 2013, Journal of agricultural and food chemistry.

[196]  M. Rubini,et al.  Aminotryptophan-containing barstar: structure--function tradeoff in protein design and engineering with an expanded genetic code. , 2006, Biochimica et biophysica acta.

[197]  Philip A. Romero,et al.  Exploring protein fitness landscapes by directed evolution , 2009, Nature Reviews Molecular Cell Biology.

[198]  Andrew D. Ellington,et al.  Selection and Characterization of Escherichia coliVariants Capable of Growth on an Otherwise Toxic Tryptophan Analogue , 2001, Journal of bacteriology.

[199]  M. Reetz,et al.  Biocatalysis in organic chemistry and biotechnology: past, present, and future. , 2013, Journal of the American Chemical Society.

[200]  N. Budisa,et al.  Natural history and experimental evolution of the genetic code , 2007, Applied Microbiology and Biotechnology.

[201]  Philippe Marlière,et al.  Toward Safe Genetically Modified Organisms through the Chemical Diversification of Nucleic Acids , 2009, Chemistry & biodiversity.

[202]  A. Yamaguchi,et al.  Highly reproductive Escherichia coli cells with no specific assignment to the UAG codon , 2015, Scientific Reports.

[203]  Wolfgang Kroutil,et al.  omega-Transaminases for the synthesis of non-racemic alpha-chiral primary amines. , 2010, Trends in biotechnology.

[204]  S. Yokoyama,et al.  Cation-pi interaction in the polyolefin cyclization cascade uncovered by incorporating unnatural amino acids into the catalytic sites of squalene cyclase. , 2006, Journal of the American Chemical Society.

[205]  R. Huber,et al.  Structure and evolution of the genetic code viewed from the perspective of the experimentally expanded amino acid repertoire in vivo , 1999, Cellular and Molecular Life Sciences CMLS.

[206]  Nicholas J Turner,et al.  Directed evolution drives the next generation of biocatalysts. , 2009, Nature chemical biology.

[207]  Liang Tong,et al.  Computational design of an unnatural amino acid dependent metalloprotein with atomic level accuracy. , 2013, Journal of the American Chemical Society.

[208]  Jean-François Lutz,et al.  Efficient construction of therapeutics, bioconjugates, biomaterials and bioactive surfaces using azide-alkyne "click" chemistry. , 2008, Advanced drug delivery reviews.

[209]  Jeremy Gunawardena,et al.  Time‐scale separation – Michaelis and Menten's old idea, still bearing fruit , 2014, The FEBS journal.

[210]  P. Schultz,et al.  Probing the mechanism of staphylococcal nuclease with unnatural amino acids: kinetic and structural studies. , 1993, Science.

[211]  G. Roelfes,et al.  Novel artificial metalloenzymes by in vivo incorporation of metal-binding unnatural amino acids , 2017 .

[212]  M. Finn,et al.  Click chemistry in complex mixtures: bioorthogonal bioconjugation. , 2014, Chemistry & biology.

[213]  Carlos G. Acevedo-Rocha,et al.  The Synthetic Nature of Biology , 2015, Ambivalences of Creating Life.

[214]  Byung-Gee Kim,et al.  Enhancing Thermostability and Organic Solvent Tolerance of ω-Transaminase through Global Incorporation of Fluorotyrosine , 2014 .

[215]  M. Richmond The effect of amino acid analogues on growth and protein synthesis in microorganisms. , 1962, Bacteriological reviews.

[216]  E. Sletten,et al.  Bioorthogonale Chemie – oder: in einem Meer aus Funktionalität nach Selektivität fischen , 2009 .

[217]  Peter G Schultz,et al.  A genetically encoded bidentate, metal-binding amino acid. , 2007, Angewandte Chemie.

[218]  Carolyn R Bertozzi,et al.  Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. , 2009, Angewandte Chemie.

[219]  Hairong Ma,et al.  The “Gate Keeper” Role of Trp222 Determines the Enantiopreference of Diketoreductase toward 2-Chloro-1-Phenylethanone , 2014, PloS one.

[220]  John C Whitman,et al.  Improving catalytic function by ProSAR-driven enzyme evolution , 2007, Nature Biotechnology.

[221]  D. Schulze‐Makuch,et al.  How Many Biochemistries Are Available To Build a Cell? , 2015, Chembiochem : a European journal of chemical biology.

[222]  A. Warshel Electrostatic Origin of the Catalytic Power of Enzymes and the Role of Preorganized Active Sites* , 1998, The Journal of Biological Chemistry.

[223]  Gerald Striedner,et al.  High-level biosynthesis of norleucine in E. coli for the economic labeling of proteins. , 2016, Journal of biotechnology.

[224]  David Eisen,et al.  Orchestrating the biosynthesis of an unnatural pyrrolysine amino Acid for its direct incorporation into proteins inside living cells. , 2015, Chemistry.

[225]  Yi Lu,et al.  Reduction potential tuning of the blue copper center in Pseudomonas aeruginosa azurin by the axial methionine as probed by unnatural amino acids. , 2006, Journal of the American Chemical Society.

[226]  C. Perry,et al.  Mussel adhesive protein inspired coatings: a versatile method to fabricate silica films on various surfaces , 2012 .

[227]  Christopher T. Walsh,et al.  Posttranslationale Proteinmodifikation: die Chemie der Proteomdiversifizierung , 2005 .

[228]  M. T. Reetz,et al.  Erzeugung enantioselektiver Biokatalysatoren für die Organische Chemie durch In‐vitro‐Evolution , 1997 .

[229]  J. Szostak,et al.  Enzymatic aminoacylation of tRNA with unnatural amino acids. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[230]  N. Budisa,et al.  Performance Analysis of Orthogonal Pairs Designed for an Expanded Eukaryotic Genetic Code , 2012, PloS one.

[231]  S. Hunt,et al.  The Non-Protein Amino Acids , 1985 .

[232]  Andreas Vogel,et al.  Iterative saturation mutagenesis on the basis of B factors as a strategy for increasing protein thermostability. , 2006, Angewandte Chemie.

[233]  F. Arnold,et al.  Optimizing non-natural protein function with directed evolution. , 2011, Current opinion in chemical biology.

[234]  H. Neumann,et al.  Rewiring translation – Genetic code expansion and its applications , 2012, FEBS letters.

[235]  Vitor B. Pinheiro,et al.  The XNA world: progress towards replication and evolution of synthetic genetic polymers. , 2012, Current opinion in chemical biology.

[236]  A. Rosato,et al.  Cytochrome c: occurrence and functions. , 2006, Chemical reviews.

[237]  Andreas S Bommarius,et al.  Biocatalysis: A Status Report. , 2015, Annual review of chemical and biomolecular engineering.

[238]  Jasmine L. Gallaher,et al.  Computational Design of an Enzyme Catalyst for a Stereoselective Bimolecular Diels-Alder Reaction , 2010, Science.

[239]  Manfred T. Reetz,et al.  Creation of Enantioselective Biocatalysts for Organic Chemistry by In Vitro Evolution , 1997 .

[240]  P. Schultz,et al.  Incorporation of fluorotyrosines into ribonucleotide reductase using an evolved, polyspecific aminoacyl-tRNA synthetase. , 2011, Journal of the American Chemical Society.

[241]  P. Marlière,et al.  Conservative replacement of methionine by norleucine in Escherichia coli adenylate kinase. , 1988, The Journal of biological chemistry.

[242]  Jared C. Lewis,et al.  A General Method for Artificial Metalloenzyme Formation through Strain‐Promoted Azide–Alkyne Cycloaddition , 2014, Chembiochem : a European journal of chemical biology.

[243]  L. Merkel,et al.  Organic fluorine as a polypeptide building element: in vivo expression of fluorinated peptides, proteins and proteomes. , 2012, Organic & biomolecular chemistry.

[244]  J. Wong,et al.  Coevolution theory of the genetic code at age thirty. , 2005, BioEssays : news and reviews in molecular, cellular and developmental biology.

[245]  R. Hondal,et al.  Selenocysteine confers resistance to inactivation by oxidation in thioredoxin reductase: comparison of selenium and sulfur enzymes. , 2013, Biochemistry.

[246]  F. Arnold Engineering proteins for nonnatural environments , 1993, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[247]  Stephen Wallace,et al.  Optimized orthogonal translation of unnatural amino acids enables spontaneous protein double-labelling and FRET , 2014, Nature Chemistry.

[248]  Bradley Charles Bundy,et al.  Enhanced enzyme stability through site-directed covalent immobilization. , 2015, Journal of biotechnology.

[249]  F. Armstrong,et al.  The difference a Se makes? Oxygen-tolerant hydrogen production by the [NiFeSe]-hydrogenase from Desulfomicrobium baculatum. , 2008, Journal of the American Chemical Society.

[250]  R. A. Hughes,et al.  Evolving new genetic codes. , 2004, Trends in ecology & evolution.

[251]  J. Glass,et al.  Transfer RNA Misidentification Scrambles Sense Codon Recoding , 2013, Chembiochem : a European journal of chemical biology.

[252]  A. Deiters,et al.  Modulating the pKa of a Tyrosine in KlenTaq DNA Polymerase that Is Crucial for Abasic Site Bypass by in Vivo Incorporation of a Non‐canonical Amino Acid , 2014, Chembiochem : a European journal of chemical biology.

[253]  Roger A. Sheldon,et al.  Enzyme Immobilization: The Quest for Optimum Performance , 2007 .

[254]  Sajja Hari Krishna,et al.  Optimizing lipases and related enzymes for efficient application. , 2002, Trends in biotechnology.