Novel high-order energy-preserving diagonally implicit Runge-Kutta schemes for nonlinear Hamiltonian ODEs

Abstract We utilize the invariant energy quadratization approach to transform the nonlinear Hamiltonian ODE into an equivalent form which has a quadratic energy. Then the reformulation is discretized using a class of diagonally implicit Runge–Kutta schemes. The proposed schemes are proved to conserve a modified quadratic energy conservation law and converge with high-order accuracy. Numerical experiments for several ODEs are provided to illustrate the accuracy, convergence and conservative properties of the proposed method. Comparisons with the symplectic Runge–Kutta scheme and energy-preserving average vector field method are presented to demonstrate the energy-preserving property and accuracy of the proposed method.

[1]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[2]  J. M. Sanz-Serna,et al.  Order conditions for canonical Runge-Kutta schemes , 1991 .

[3]  Lili Ju,et al.  Linear and unconditionally energy stable schemes for the binary fluid–surfactant phase field model , 2017, 1701.07446.

[4]  L. Brugnano,et al.  Hamiltonian Boundary Value Methods (Energy Conserving Discrete Line Integral Methods) , 2009, 0910.3621.

[5]  Qi Hong,et al.  An efficient energy-preserving algorithm for the Lorentz force system , 2019, Appl. Math. Comput..

[6]  J. M. Franco,et al.  Fourth-Order Symmetric DIRK Methods for Periodic Stiff Problems , 2003, Numerical Algorithms.

[7]  Jie Shen,et al.  Convergence and Error Analysis for the Scalar Auxiliary Variable (SAV) Schemes to Gradient Flows , 2018, SIAM J. Numer. Anal..

[8]  Xiaoli Li,et al.  Efficient modified techniques of invariant energy quadratization approach for gradient flows , 2019, Appl. Math. Lett..

[9]  Kang Feng,et al.  Symplectic Difference Schemes for Hamiltonian Systems , 2010 .

[10]  Desmond J. Higham,et al.  Numerical Methods for Ordinary Differential Equations - Initial Value Problems , 2010, Springer undergraduate mathematics series.

[11]  Haochen Li,et al.  Partitioned averaged vector field methods , 2018, J. Comput. Phys..

[12]  Jia Zhao,et al.  Numerical approximations for the molecular beam epitaxial growth model based on the invariant energy quadratization method , 2017, J. Comput. Phys..

[13]  G. J. Cooper Stability of Runge-Kutta Methods for Trajectory Problems , 1987 .

[14]  Lili Ju,et al.  Efficient linear schemes with unconditional energy stability for the phase field elastic bending energy model , 2017 .

[15]  E. Hairer,et al.  Solving Ordinary Differential Equations II , 2010 .

[16]  Yongzhong Song,et al.  Structure-preserving algorithms for the two-dimensional sine-Gordon equation with Neumann boundary conditions , 2018, J. Comput. Phys..

[17]  Elena Celledoni,et al.  Geometric properties of Kahan's method , 2012, 1209.1164.

[18]  Chaolong Jiang,et al.  A Linearly Implicit and Local Energy-Preserving Scheme for the Sine-Gordon Equation Based on the Invariant Energy Quadratization Approach , 2018, Journal of Scientific Computing.

[19]  Yuhao Cong,et al.  A sixth order diagonally implicit symmetric and symplectic Runge-Kutta method for solving Hamiltonian systems , 2015 .

[20]  Xiaofeng Yang,et al.  Efficient Second Order Unconditionally Stable Schemes for a Phase Field Moving Contact Line Model Using an Invariant Energy Quadratization Approach , 2018, SIAM J. Sci. Comput..

[21]  Donato Trigiante,et al.  A two-step, fourth-order method with energy preserving properties , 2011, Comput. Phys. Commun..

[22]  M. Qin,et al.  A sixth order averaged vector field method , 2014, 1412.5346.

[23]  Jiang Yang,et al.  The scalar auxiliary variable (SAV) approach for gradient flows , 2018, J. Comput. Phys..

[24]  Brynjulf Owren,et al.  A General Framework for Deriving Integral Preserving Numerical Methods for PDEs , 2011, SIAM J. Sci. Comput..

[25]  D. Furihata,et al.  Discrete Variational Derivative Method: A Structure-Preserving Numerical Method for Partial Differential Equations , 2010 .

[26]  Antonella Zanna,et al.  Numerical solution of isospectral flows , 1997, Math. Comput..

[27]  Theodore E. Simos,et al.  Diagonally implicit symplectic Runge-Kutta methods with special properties , 2012 .

[28]  Elena Celledoni,et al.  Preserving energy resp. dissipation in numerical PDEs using the "Average Vector Field" method , 2012, J. Comput. Phys..