A new median formula with applications to PDE based denoising

We develop a simple algorithm for finding the minimizer of the function E(x)= ∑n i=1wi |x−ai|+F (x), when the wi are nonnegative and F is strictly convex. If F is also differentiable and F ′ is bijective, we obtain an explicit formula in terms of a median. This enables us to obtain approximate solutions to certain important variational problems arising in image denoising. We also present a generalization with E(x)=J(x)+F (x) for J(x) a convex piecewise differentiable function with a finite number of nondifferentiable points.

[1]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[2]  David L. Donoho,et al.  De-noising by soft-thresholding , 1995, IEEE Trans. Inf. Theory.

[3]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[4]  G. Winkler,et al.  Noise Reduction in Images: Some Recent Edge-Preserving Methods , 1998 .

[5]  Marcel Worring,et al.  Watersnakes: Energy-Driven Watershed Segmentation , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  J. Morel,et al.  On image denoising methods , 2004 .

[7]  Jérôme Darbon,et al.  A Fast and Exact Algorithm for Total Variation Minimization , 2005, IbPRIA.

[8]  P. Mrázek,et al.  ON ROBUST ESTIMATION AND SMOOTHING WITH SPATIAL AND TONAL KERNELS , 2006 .

[9]  Ke Chen,et al.  An Optimization-Based Multilevel Algorithm for Total Variation Image Denoising , 2006, Multiscale Model. Simul..

[10]  Stanley Osher,et al.  Iterative Regularization and Nonlinear Inverse Scale Space Applied to Wavelet-Based Denoising , 2007, IEEE Transactions on Image Processing.

[11]  Guy Gilboa,et al.  Nonlocal Linear Image Regularization and Supervised Segmentation , 2007, Multiscale Model. Simul..

[12]  R. Tibshirani,et al.  PATHWISE COORDINATE OPTIMIZATION , 2007, 0708.1485.

[13]  Wotao Yin,et al.  Bregman Iterative Algorithms for (cid:2) 1 -Minimization with Applications to Compressed Sensing ∗ , 2008 .

[14]  Wotao Yin,et al.  Parametric Maximum Flow Algorithms for Fast Total Variation Minimization , 2009, SIAM J. Sci. Comput..