Poincaré Inequality Meets Brezis–Van Schaftingen–Yung Formula on Metric Measure Spaces
暂无分享,去创建一个
Feng Dai | Dachun Yang | Wen Yuan | Xiaosheng Lin | Yangyang Zhang | F. Dai | Dachun Yang | Yangyang Zhang | Xiaosheng Lin | Wen Yuan
[1] V. G. Mazʹi︠a︡,et al. Sobolev spaces : with applications to elliptic partial differential equations , 2011 .
[2] Lesley A. Ward,et al. Singular integrals on Carleson measure spaces $CMO^{p}$ on product spaces of homogeneous type , 2013 .
[3] Haim Brezis,et al. How to recognize constant functions. Connections with Sobolev spaces , 2002 .
[4] Ji Li. ATOMIC DECOMPOSITION OF WEIGHTED TRIEBEL–LIZORKIN SPACES ON SPACES OF HOMOGENEOUS TYPE , 2010, Journal of the Australian Mathematical Society.
[5] Ronald R. Coifman,et al. Analyse harmonique non-commutative sur certains espaces homogènes : étude de certaines intégrales singulières , 1971 .
[6] Arkady Poliakovsky. Some remarks on a formula for Sobolev norms due to Brezis, Van Schaftingen and Yung , 2021, Journal of Functional Analysis.
[7] Fu Ken Ly,et al. Maximal function characterizations for new local Hardy-type spaces on spaces of homogeneous type , 2016, Transactions of the American Mathematical Society.
[8] E. Valdinoci,et al. Hitchhiker's guide to the fractional Sobolev spaces , 2011, 1104.4345.
[9] Po-Lam Yung,et al. A new formula for the $L^p$ norm , 2021, 2102.09657.
[10] K. Yabuta,et al. POINTWISE MULTIPLIERS FOR FUNCTIONS OF WEIGHTED BOUNDED MEAN OSCILLATION ON SPACES OF HOMOGENEOUS TYPE , 1997 .
[11] Petru Mironescu,et al. Limiting embedding theorems forWs,p whens ↑ 1 and applications , 2002 .
[12] Luigi Ambrosio,et al. Lectures on analysis in metric spaces , 2013 .
[13] L. Caffarelli,et al. Nonlocal minimal surfaces , 2009, 0905.1183.
[14] G. Mingione. Gradient potential estimates , 2011 .
[15] E. Nakai. The Campanato, Morrey and Hlder spaces on spaces of homogeneous type , 2006 .
[16] Po-Lam Yung,et al. A new formula for the L norm , 2021 .
[17] Pekka Koskela,et al. Sobolev met Poincaré , 2000 .
[18] Petru Mironescu,et al. Lifting in Sobolev spaces , 2000 .
[19] X. Duong,et al. Sharp Weighted Estimates for Square Functions Associated to Operators on Spaces of Homogeneous Type , 2020, The Journal of Geometric Analysis.
[20] John M. Lee. Introduction to Smooth Manifolds , 2002 .
[21] L. Grafakos. Classical Fourier Analysis , 2010 .
[22] L. Caffarelli,et al. Uniform estimates and limiting arguments for nonlocal minimal surfaces , 2011 .
[23] P. Alam,et al. H , 1887, High Explosives, Propellants, Pyrotechnics.
[24] C. Pérez,et al. Degenerate Poincaré–Sobolev inequalities , 2019, Transactions of the American Mathematical Society.
[25] Ronald R. Coifman,et al. Analyse Hamonique Non-Commutative sur Certains Espaces Homogenes , 1971 .
[26] Po-Lam Yung,et al. Going to Lorentz when fractional Sobolev, Gagliardo and Nirenberg estimates fail , 2021 .
[27] J. Bourgain,et al. Another look at Sobolev spaces , 2001 .
[28] Yongsheng Han,et al. Criterion of the boundedness of singular integrals on spaces of homogeneous type , 2015, 1601.06124.
[29] G. Weiss,et al. Extensions of Hardy spaces and their use in analysis , 1977 .
[30] Giuseppe Mastroianni,et al. Best Approximation and Moduli of Smoothness for Doubling Weights , 2001, J. Approx. Theory.
[31] Po-Lam Yung,et al. A surprising formula for Sobolev norms , 2021, Proceedings of the National Academy of Sciences.
[32] Yongsheng Han,et al. Geometry and Hardy spaces on spaces of homogeneous type in the sense of Coifman and Weiss , 2017 .
[33] Kirill Kopotun,et al. Polynomial approximation with doubling weights having finitely many zeros and singularities , 2014, J. Approx. Theory.
[34] T. Hytonen. A framework for non-homogeneous analysis on metric spaces, and the RBMO space of Tolsa , 2009, 0909.3231.