Poincaré Inequality Meets Brezis–Van Schaftingen–Yung Formula on Metric Measure Spaces

Let (X, ρ, μ) be a metric measure space of homogeneous type which supports a certain Poincaré inequality. Denote by the symbol C∗c(X) the space of all continuous functions f with compact support satisfying that Lip f := lim supr→0 supy∈B(·,r) | f (·) − f (y)|/r is also a continuous function with compact support and Lip f = limr→0 supy∈B(·,r) | f (·) − f (y)|/r converges uniformly. Let p ∈ [1,∞). In this article, the authors prove that, for any f ∈ C∗c(X), sup λ∈(0,∞) λ ∫ X μ ({ y ∈ X : | f (x) − f (y)| > λρ(x, y)[V(x, y)] 1 p }) dμ(x)

[1]  V. G. Mazʹi︠a︡,et al.  Sobolev spaces : with applications to elliptic partial differential equations , 2011 .

[2]  Lesley A. Ward,et al.  Singular integrals on Carleson measure spaces $CMO^{p}$ on product spaces of homogeneous type , 2013 .

[3]  Haim Brezis,et al.  How to recognize constant functions. Connections with Sobolev spaces , 2002 .

[4]  Ji Li ATOMIC DECOMPOSITION OF WEIGHTED TRIEBEL–LIZORKIN SPACES ON SPACES OF HOMOGENEOUS TYPE , 2010, Journal of the Australian Mathematical Society.

[5]  Ronald R. Coifman,et al.  Analyse harmonique non-commutative sur certains espaces homogènes : étude de certaines intégrales singulières , 1971 .

[6]  Arkady Poliakovsky Some remarks on a formula for Sobolev norms due to Brezis, Van Schaftingen and Yung , 2021, Journal of Functional Analysis.

[7]  Fu Ken Ly,et al.  Maximal function characterizations for new local Hardy-type spaces on spaces of homogeneous type , 2016, Transactions of the American Mathematical Society.

[8]  E. Valdinoci,et al.  Hitchhiker's guide to the fractional Sobolev spaces , 2011, 1104.4345.

[9]  Po-Lam Yung,et al.  A new formula for the $L^p$ norm , 2021, 2102.09657.

[10]  K. Yabuta,et al.  POINTWISE MULTIPLIERS FOR FUNCTIONS OF WEIGHTED BOUNDED MEAN OSCILLATION ON SPACES OF HOMOGENEOUS TYPE , 1997 .

[11]  Petru Mironescu,et al.  Limiting embedding theorems forWs,p whens ↑ 1 and applications , 2002 .

[12]  Luigi Ambrosio,et al.  Lectures on analysis in metric spaces , 2013 .

[13]  L. Caffarelli,et al.  Nonlocal minimal surfaces , 2009, 0905.1183.

[14]  G. Mingione Gradient potential estimates , 2011 .

[15]  E. Nakai The Campanato, Morrey and Hlder spaces on spaces of homogeneous type , 2006 .

[16]  Po-Lam Yung,et al.  A new formula for the L norm , 2021 .

[17]  Pekka Koskela,et al.  Sobolev met Poincaré , 2000 .

[18]  Petru Mironescu,et al.  Lifting in Sobolev spaces , 2000 .

[19]  X. Duong,et al.  Sharp Weighted Estimates for Square Functions Associated to Operators on Spaces of Homogeneous Type , 2020, The Journal of Geometric Analysis.

[20]  John M. Lee Introduction to Smooth Manifolds , 2002 .

[21]  L. Grafakos Classical Fourier Analysis , 2010 .

[22]  L. Caffarelli,et al.  Uniform estimates and limiting arguments for nonlocal minimal surfaces , 2011 .

[23]  P. Alam,et al.  H , 1887, High Explosives, Propellants, Pyrotechnics.

[24]  C. Pérez,et al.  Degenerate Poincaré–Sobolev inequalities , 2019, Transactions of the American Mathematical Society.

[25]  Ronald R. Coifman,et al.  Analyse Hamonique Non-Commutative sur Certains Espaces Homogenes , 1971 .

[26]  Po-Lam Yung,et al.  Going to Lorentz when fractional Sobolev, Gagliardo and Nirenberg estimates fail , 2021 .

[27]  J. Bourgain,et al.  Another look at Sobolev spaces , 2001 .

[28]  Yongsheng Han,et al.  Criterion of the boundedness of singular integrals on spaces of homogeneous type , 2015, 1601.06124.

[29]  G. Weiss,et al.  Extensions of Hardy spaces and their use in analysis , 1977 .

[30]  Giuseppe Mastroianni,et al.  Best Approximation and Moduli of Smoothness for Doubling Weights , 2001, J. Approx. Theory.

[31]  Po-Lam Yung,et al.  A surprising formula for Sobolev norms , 2021, Proceedings of the National Academy of Sciences.

[32]  Yongsheng Han,et al.  Geometry and Hardy spaces on spaces of homogeneous type in the sense of Coifman and Weiss , 2017 .

[33]  Kirill Kopotun,et al.  Polynomial approximation with doubling weights having finitely many zeros and singularities , 2014, J. Approx. Theory.

[34]  T. Hytonen A framework for non-homogeneous analysis on metric spaces, and the RBMO space of Tolsa , 2009, 0909.3231.