Sunda subduction drives ongoing India-Asia convergence

[1]  V. Strak,et al.  Sustained indentation in 2D models of continental collision involving whole mantle subduction , 2022, Geophysical Journal International.

[2]  K. Sigloch,et al.  Australian Plate Subduction is Responsible for Northward Motion of the India‐Asia Collision Zone and ∼1,000 km Lateral Migration of the Indian Slab , 2021, Geophysical Research Letters.

[3]  P. Tapponnier,et al.  Is There a Nascent Plate Boundary in the Northern Indian Ocean? , 2020, Geophysical Research Letters.

[4]  J. Brun,et al.  3D slab breakoff in laboratory experiments , 2019, Tectonophysics.

[5]  F. Rosas,et al.  Pacific subduction control on Asian continental deformation including Tibetan extension and eastward extrusion tectonics , 2019, Nature Communications.

[6]  W. Spakman,et al.  Reconstructing Greater India: Paleogeographic, kinematic, and geodynamic perspectives , 2019, Tectonophysics.

[7]  J. Burg Geology of the onshore Makran accretionary wedge: Synthesis and tectonic interpretation , 2018, Earth-Science Reviews.

[8]  V. Strak,et al.  A subduction and mantle plume origin for Samoan volcanism , 2018, Scientific Reports.

[9]  B. Norder,et al.  New analogue materials for nonlinear lithosphere rheology, with an application to slab break-off , 2018, Tectonophysics.

[10]  C. Faccenna,et al.  Asian collisional subduction: A key process driving formation of the Tibetan Plateau , 2016 .

[11]  A. Colman,et al.  Large-scale subduction of continental crust implied by India-Asia mass-balance calculation , 2016 .

[12]  V. Strak,et al.  Does subduction-induced mantle flow drive backarc extension? , 2016 .

[13]  W. Schellart,et al.  Geodynamic models of continental subduction and obduction of overriding plate forearc oceanic lithosphere on top of continental crust , 2015 .

[14]  G. Houseman,et al.  Deformation of Indian Ocean lithosphere: Evidence for a highly nonlinear rheological law , 2015 .

[15]  B. Kaus,et al.  Development of topography in 3‐D continental‐collision models , 2015 .

[16]  Chengshan Wang,et al.  Propagation of the deformation and growth of the Tibetan–Himalayan orogen: A review , 2015 .

[17]  A. Replumaz,et al.  Reconciling subduction dynamics during Tethys closure with large‐scale Asian tectonics: Insights from numerical modeling , 2015 .

[18]  L. Jolivet,et al.  Driving the upper plate surface deformation by slab rollback and mantle flow , 2014 .

[19]  Geoffrey Blewitt,et al.  A geodetic plate motion and Global Strain Rate Model , 2014 .

[20]  A. Cruden,et al.  Rheology of petrolatum–paraffin oil mixtures: Applications to analogue modelling of geological processes , 2014 .

[21]  T. Gerya,et al.  Slab detachment in laterally varying subduction zones: 3‐D numerical modeling , 2014 .

[22]  Zhidan Zhao,et al.  Continental collision zones are primary sites for net continental crust growth — A testable hypothesis , 2013 .

[23]  A. Cruden,et al.  Three-dimensional dynamic laboratory models of subduction with an overriding plate and variable interplate rheology , 2013 .

[24]  Romain F. Laine,et al.  Orocline and syntaxes formation during subduction and collision , 2013 .

[25]  Louis Moresi,et al.  A new driving mechanism for backarc extension and backarc shortening through slab sinking induced toroidal and poloidal mantle flow: Results from dynamic subduction models with an overriding plate , 2013 .

[26]  C. Vigny,et al.  April 2012 intra-oceanic seismicity off Sumatra boosted by the Banda-Aceh megathrust , 2012, Nature.

[27]  Keith D. Koper,et al.  En échelon and orthogonal fault ruptures of the 11 April 2012 great intraplate earthquakes , 2012, Nature.

[28]  C. Faccenna,et al.  Mantle conveyor beneath the Tethyan collisional belt , 2011 .

[29]  S. Cande,et al.  Indian and African plate motions driven by the push force of the Réunion plume head , 2011, Nature.

[30]  D. May,et al.  Numerical modelling of spontaneous slab breakoff and subsequent topographic response , 2011 .

[31]  S. Hickman,et al.  Low strength of deep San Andreas fault gouge from SAFOD core , 2011, Nature.

[32]  F. Simons,et al.  Constraints on upper mantle viscosity from the flow‐induced pressure gradient across the Australian continental keel , 2010 .

[33]  A. Replumaz,et al.  Multiple episodes of continental subduction during India/Asia convergence: Insight from seismic tomography and tectonic reconstruction , 2010 .

[34]  Louis Moresi,et al.  India–Asia convergence driven by the subduction of the Greater Indian continent , 2010 .

[35]  G. Lesage,et al.  Petrology and geochemistry of the Saga and Sangsang ophiolitic massifs, Yarlung Zangbo Suture Zone, Southern Tibet: Evidence for an arc-back-arc origin , 2009 .

[36]  M. Taylor,et al.  Active structures of the Himalayan-Tibetan orogen and their relationships to earthquake distribution, contemporary strain field, and Cenozoic volcanism , 2009 .

[37]  E. Engdahl,et al.  Subduction of the Indian lithosphere beneath the Tibetan Plateau and Burma , 2008 .

[38]  W. Schellart Kinematics and flow patterns in deep mantle and upper mantle subduction models: Influence of the mantle depth and slab to mantle viscosity ratio , 2008 .

[39]  D. May,et al.  Evolution and diversity of subduction zones controlled by slab width , 2007, Nature.

[40]  W. Spakman,et al.  Subduction history of the Tethyan region derived from seismic tomography and tectonic reconstructions , 2006 .

[41]  C. Faccenna,et al.  Slab detachment beneath eastern Anatolia: A possible cause for the formation of the North Anatolian fault , 2006 .

[42]  C. Faccenna,et al.  Slab pull and indentation tectonics: insights from 3D laboratory experiments , 2005 .

[43]  Bernhard Wieneke,et al.  Shear localisation and strain distribution during tectonic faulting—new insights from granular-flow experiments and high-resolution optical image correlation techniques , 2005 .

[44]  W. Schellart Kinematics of subduction and subduction-induced flow in the upper mantle , 2004 .

[45]  L. Jolivet,et al.  Backarc extension and collision: an experimental approach to the tectonics of Asia , 2004 .

[46]  R. Hilst,et al.  4-D evolution of SE Asia’s mantle from geological reconstructions and seismic tomography , 2004 .

[47]  M. Jessell,et al.  Asymmetric deformation in the backarc region of the Kuril arc, northwest Pacific: New insights from analogue modeling , 2003 .

[48]  D. Baratoux,et al.  Reconstructing the total shortening history of the NW Himalaya , 2003 .

[49]  P. Tapponnier,et al.  Reconstruction of the deformed collision zone Between India and Asia by backward motion of lithospheric blocks , 2003 .

[50]  Jean-Charles Thomas,et al.  From subduction to collision: Control of deep processes on the evolution of convergent plate boundary , 2003 .

[51]  Gabriele Morra,et al.  Dynamics of retreating slabs: 1. Insights from two-dimensional numerical experiments , 2003 .

[52]  C. Conrad,et al.  How Mantle Slabs Drive Plate Tectonics , 2002, Science.

[53]  Bertrand Meyer,et al.  Oblique Stepwise Rise and Growth of the Tibet Plateau , 2001, Science.

[54]  An Yin,et al.  Geologic Evolution of the Himalayan-Tibetan Orogen , 2000 .

[55]  M. Wortel,et al.  Slab detachment in continental collision zones: An analysis of controlling parameters , 1997 .

[56]  Wang,et al.  Surface Deformation and Lower Crustal Flow in Eastern Tibet , 1997, Science.

[57]  J. Martinod,et al.  An analog experiment for the Aegean to describe the contribution of gravitational potential energy , 1997 .

[58]  M. Sandiford,et al.  Ridge torques and continental collision in the Indian-Australian plate , 1995 .

[59]  Eric J. Fielding,et al.  How flat is Tibet , 1994 .

[60]  Philip England,et al.  Crustal thickening versus lateral expulsion in the Indian‐Asian continental collision , 1993 .

[61]  Mark Cloos,et al.  Lithospheric buoyancy and collisional orogenesis: Subduction of oceanic plateaus, continental margins, island arcs, spreading ridges, and seamounts , 1993 .

[62]  J. Peirce,et al.  An early India-Asia contact: Paleomagnetic constraints from Ninetyeast Ridge, ODP Leg 121 , 1992 .

[63]  M. Zoback State of stress and crustal deformation along weak transform faults , 1991, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[64]  P. R. Cobbold,et al.  Lateral extrusion in the eastern Alps, Part 1: Boundary conditions and experiments scaled for gravity , 1991 .

[65]  Richard G. Gordon,et al.  Current plate motions , 1990 .

[66]  G. Peltzer,et al.  Formation and evolution of strike‐slip faults, rifts, and basins during the India‐Asia Collision: An experimental approach , 1988 .

[67]  J. Dewey Extensional collapse of orogens , 1988 .

[68]  J. Besse,et al.  Paleogeographic maps of the continents bordering the Indian Ocean since the Early Jurassic , 1988 .

[69]  S. Cloetingh,et al.  Stress in the Indo-Australian plate , 1986 .

[70]  J. Jaeger,et al.  Deccan flood basalts at the Cretaceous/Tertiary boundary? , 1986 .

[71]  W. Ryan,et al.  Extension in the Tyrrhenian Sea and shortening in the Apennines as result of arc migration driven by sinking of the lithosphere , 1986 .

[72]  Philip England,et al.  FINITE STRAIN CALCULATIONS OF CONTINENTAL DEFORMATION .2. COMPARISON WITH THE INDIA-ASIA COLLISION ZONE , 1986 .

[73]  S. Stein,et al.  A diffuse plate boundary model for Indian Ocean tectonics , 1985 .

[74]  J. Achache,et al.  India–Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates , 1984, Nature.

[75]  E. Parmentier,et al.  Lithospheric stress near a ridge‐transform intersection , 1984 .

[76]  P. R. Cobbold,et al.  Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine , 1982 .

[77]  Donald W. Forsyth,et al.  On the Relative Importance of the Driving Forces of Plate Motion , 1975 .

[78]  P. Molnar,et al.  Cenozoic Tectonics of Asia: Effects of a Continental Collision: Features of recent continental tectonics in Asia can be interpreted as results of the India-Eurasia collision. , 1975, Science.

[79]  W. Jacoby Model Experiment of Plate Movements , 1973 .

[80]  Q. Zhang,et al.  Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism , 2005 .

[81]  J. Dewey,et al.  Kinematics of the western Mediterranean , 1989, Geological Society, London, Special Publications.

[82]  P. Davy,et al.  Indentation tectonics in nature and experiment. I: Experiments scaled for gravity , 1988 .