Recurrence for Discrete Time Unitary Evolutions

We consider quantum dynamical systems specified by a unitary operator U and an initial state vector $${\phi}$$. In each step the unitary is followed by a projective measurement checking whether the system has returned to the initial state. We call the system recurrent if this eventually happens with probability one. We show that recurrence is equivalent to the absence of an absolutely continuous part from the spectral measure of U with respect to $${\phi}$$. We also show that in the recurrent case the expected first return time is an integer or infinite, for which we give a topological interpretation. A key role in our theory is played by the first arrival amplitudes, which turn out to be the (complex conjugated) Taylor coefficients of the Schur function of the spectral measure. On the one hand, this provides a direct dynamical interpretation of these coefficients; on the other hand it links our definition of first return times to a large body of mathematical literature.

[1]  Dieter Meschede,et al.  Bound Molecules in an Interacting Quantum Walk , 2011, 1105.1051.

[2]  F. A. Grunbaum,et al.  One-Dimensional Quantum Walks with One Defect , 2010, 1010.5762.

[3]  J. Goldstein Bound states and scattered states for contraction semigroups , 1985 .

[4]  Sergei Khrushchev,et al.  Schur's Algorithm, Orthogonal Polynomials, and Convergence of Wall's Continued Fractions in L2(T) , 2001, J. Approx. Theory.

[5]  Barry Simon,et al.  CMV matrices: Five years after , 2006, math/0603093.

[6]  G. Pólya Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Straßennetz , 1921 .

[7]  K. Yosida,et al.  Markoff process with an enumerable infinite number of possible states , 1940 .

[8]  Volkher B. Scholz,et al.  Disordered Quantum Walks in one lattice dimension , 2011, 1101.2298.

[9]  S. Verblunsky,et al.  On Positive Harmonic Functions: A Contribution to the Algebra of Fourier Series , 1935 .

[10]  Leandro Moral,et al.  Five-diagonal matrices and zeros of orthogonal polynomials on the unit circle , 2002 .

[11]  Hung T. Nguyen,et al.  A course in stochastic processes , 1996 .

[12]  Friedrich Riesz Über die Fourierkoeffizienten einer stetigen Funktion von beschränkter Schwankung , 1918 .

[13]  Barry Simon,et al.  Methods of modern mathematical physics. III. Scattering theory , 1979 .

[14]  Andris Ambainis,et al.  One-dimensional quantum walks , 2001, STOC '01.

[15]  F. A. Grunbaum,et al.  Matrix‐valued Szegő polynomials and quantum random walks , 2009, 0901.2244.

[16]  Arrival time observables in quantum mechanics , 1987 .

[17]  Otto Frostman Potentiel d'équilibre et capacité des ensembles : Avec quelques applications a la théorie des fonctions , 1935 .

[18]  D Meschede,et al.  Nearest-neighbor detection of atoms in a 1D optical lattice by fluorescence imaging. , 2008, Physical review letters.

[19]  M. B. Menskii,et al.  Continuous quantum measurements and path integrals , 1993 .

[20]  J. Schur,et al.  Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind. , 1917 .

[21]  G. R. Allcock,et al.  The time of arrival in quantum mechanics I , 1969 .

[22]  J. Garnett,et al.  Bounded Analytic Functions , 2006 .

[23]  Volkher B. Scholz,et al.  Asymptotic behavior of quantum walks with spatio-temporal coin fluctuations , 2012, Quantum Inf. Process..

[24]  Exact energy?time uncertainty relation for arrival time by absorption , 2011, 1109.5087.

[25]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[26]  H. Brezis New Questions Related to the Topological Degree , 2006 .

[27]  Eric Bach,et al.  One-dimensional quantum walks with absorbing boundaries , 2004, J. Comput. Syst. Sci..

[28]  Samuel Karlin,et al.  A First Course on Stochastic Processes , 1968 .

[29]  Albert H. Werner,et al.  Asymptotic evolution of quantum walks with random coin , 2010, 1009.2019.

[30]  Svante Janson,et al.  Weak limits for quantum random walks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  Barry Simon,et al.  Orthogonal Polynomials on the Unit Circle , 2004, Encyclopedia of Special Functions: The Askey-Bateman Project.

[32]  David S. Watkins,et al.  Some Perspectives on the Eigenvalue Problem , 1993, SIAM Rev..

[33]  F. A. Grunbaum,et al.  The Quantum Walk of F. Riesz , 2011, 1111.6630.

[34]  Y. Last Quantum Dynamics and Decompositions of Singular Continuous Spectra , 1995 .

[35]  I Jex,et al.  Recurrence and Pólya number of quantum walks. , 2007, Physical review letters.

[36]  Gilles Brassard,et al.  Quantum computing: the end of classical cryptography? , 1994, SIGA.