Recurrence for Discrete Time Unitary Evolutions
暂无分享,去创建一个
A. H. Werner | F. A. Grünbaum | R. F. Werner | R. Werner | F. Grünbaum | L. Velázquez | L. Velázquez | A. Werner | L. Velázquez
[1] Dieter Meschede,et al. Bound Molecules in an Interacting Quantum Walk , 2011, 1105.1051.
[2] F. A. Grunbaum,et al. One-Dimensional Quantum Walks with One Defect , 2010, 1010.5762.
[3] J. Goldstein. Bound states and scattered states for contraction semigroups , 1985 .
[4] Sergei Khrushchev,et al. Schur's Algorithm, Orthogonal Polynomials, and Convergence of Wall's Continued Fractions in L2(T) , 2001, J. Approx. Theory.
[5] Barry Simon,et al. CMV matrices: Five years after , 2006, math/0603093.
[6] G. Pólya. Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Straßennetz , 1921 .
[7] K. Yosida,et al. Markoff process with an enumerable infinite number of possible states , 1940 .
[8] Volkher B. Scholz,et al. Disordered Quantum Walks in one lattice dimension , 2011, 1101.2298.
[9] S. Verblunsky,et al. On Positive Harmonic Functions: A Contribution to the Algebra of Fourier Series , 1935 .
[10] Leandro Moral,et al. Five-diagonal matrices and zeros of orthogonal polynomials on the unit circle , 2002 .
[11] Hung T. Nguyen,et al. A course in stochastic processes , 1996 .
[12] Friedrich Riesz. Über die Fourierkoeffizienten einer stetigen Funktion von beschränkter Schwankung , 1918 .
[13] Barry Simon,et al. Methods of modern mathematical physics. III. Scattering theory , 1979 .
[14] Andris Ambainis,et al. One-dimensional quantum walks , 2001, STOC '01.
[15] F. A. Grunbaum,et al. Matrix‐valued Szegő polynomials and quantum random walks , 2009, 0901.2244.
[16] Arrival time observables in quantum mechanics , 1987 .
[17] Otto Frostman. Potentiel d'équilibre et capacité des ensembles : Avec quelques applications a la théorie des fonctions , 1935 .
[18] D Meschede,et al. Nearest-neighbor detection of atoms in a 1D optical lattice by fluorescence imaging. , 2008, Physical review letters.
[19] M. B. Menskii,et al. Continuous quantum measurements and path integrals , 1993 .
[20] J. Schur,et al. Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind. , 1917 .
[21] G. R. Allcock,et al. The time of arrival in quantum mechanics I , 1969 .
[22] J. Garnett,et al. Bounded Analytic Functions , 2006 .
[23] Volkher B. Scholz,et al. Asymptotic behavior of quantum walks with spatio-temporal coin fluctuations , 2012, Quantum Inf. Process..
[24] Exact energy?time uncertainty relation for arrival time by absorption , 2011, 1109.5087.
[25] I. G. MacDonald,et al. Symmetric functions and Hall polynomials , 1979 .
[26] H. Brezis. New Questions Related to the Topological Degree , 2006 .
[27] Eric Bach,et al. One-dimensional quantum walks with absorbing boundaries , 2004, J. Comput. Syst. Sci..
[28] Samuel Karlin,et al. A First Course on Stochastic Processes , 1968 .
[29] Albert H. Werner,et al. Asymptotic evolution of quantum walks with random coin , 2010, 1009.2019.
[30] Svante Janson,et al. Weak limits for quantum random walks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.
[31] Barry Simon,et al. Orthogonal Polynomials on the Unit Circle , 2004, Encyclopedia of Special Functions: The Askey-Bateman Project.
[32] David S. Watkins,et al. Some Perspectives on the Eigenvalue Problem , 1993, SIAM Rev..
[33] F. A. Grunbaum,et al. The Quantum Walk of F. Riesz , 2011, 1111.6630.
[34] Y. Last. Quantum Dynamics and Decompositions of Singular Continuous Spectra , 1995 .
[35] I Jex,et al. Recurrence and Pólya number of quantum walks. , 2007, Physical review letters.
[36] Gilles Brassard,et al. Quantum computing: the end of classical cryptography? , 1994, SIGA.