A 2-million-year-old microbial and viral communities from the Kap København Formation in North Greenland

Using ancient environmental DNA (eDNA)1 we reconstructed microbial and viral communities from the Kap København Formation in North Greenland2. We find pioneer microbial communities, along with likely dormant methanogens from the permafrost’s seed bank. Our findings reveal that at the time of the formation, the terrestrial input of the Kap København site originated from a palustrine wetland, suggesting non-permafrost conditions. During this time, detection of methanogenic archaea and carbon processing pathways suggests a moderate strengthening of methane emissions through the northward expansion of wetlands. Intriguingly, we discover a remarkable sequence similarity (>98%) between pioneer methanogens and present-day thawing permafrost counterparts. This suggests that not all microbes respond uniformly to environmental change over geological timescales, but that some microbial taxa’s adaptability and resilience remain constant over time. Our findings further suggest that the composition of microbial communities is changing prior to plant communities as a result of global warming.

[1]  A. M. Eren,et al.  Microbes with higher metabolic independence are enriched in human gut microbiomes under stress , 2023, bioRxiv.

[2]  R. Chikhi,et al.  decOM: Similarity-based microbial source tracking of ancient oral samples using k-mer-based methods , 2023, bioRxiv.

[3]  K. Sand,et al.  Survival of environmental DNA in sediments: Mineralogic control on DNA taphonomy , 2023, bioRxiv.

[4]  T. Korneliussen,et al.  metaDMG – A Fast and Accurate Ancient DNA Damage Toolkit for Metagenomic Data , 2022, bioRxiv.

[5]  J. Welch,et al.  A 2-million-year-old ecosystem in Greenland uncovered by environmental DNA , 2022, Nature.

[6]  R. Malmstrom,et al.  HT-SIP: a semi-automated stable isotope probing pipeline identifies cross-kingdom interactions in the hyphosphere of arbuscular mycorrhizal fungi , 2022, Microbiome.

[7]  Natalia N. Ivanova,et al.  IMG/VR v4: an expanded database of uncultivated virus genomes within a framework of extensive functional, taxonomic, and ecological metadata , 2022, Nucleic Acids Res..

[8]  K. Konstantinidis,et al.  Microbially enhanced methane uptake under warming enlarges ecosystem carbon sink in a Tibetan alpine grassland , 2022, Global change biology.

[9]  R. Logares,et al.  Tracking contemporary microbial evolution in a changing ocean. , 2022, Trends in microbiology.

[10]  N. Ravin,et al.  Genome analysis of the candidate phylum MBNT15 bacterium from a boreal peatland predicted its respiratory versatility and dissimilatory iron metabolism , 2022, Frontiers in Microbiology.

[11]  T. Maeda,et al.  Microbial Community Structures and Methanogenic Functions in Wetland Peat Soils , 2022, Microbes and environments.

[12]  Donovan H. Parks,et al.  GTDB-Tk v2: memory friendly classification with the genome taxonomy database , 2022, bioRxiv.

[13]  Alexander J. Probst,et al.  Carbon fixation rates in groundwater similar to those in oligotrophic marine systems , 2022, Nature Geoscience.

[14]  Songnian Hu,et al.  A genome and gene catalog of glacier microbiomes , 2022, Nature Biotechnology.

[15]  Ursel M. E. Schütte,et al.  Microbiome assembly in thawing permafrost and its feedbacks to climate , 2022, Global change biology.

[16]  C. T. Brown,et al.  Evaluation of taxonomic classification and profiling methods for long-read shotgun metagenomic sequencing datasets , 2022, bioRxiv.

[17]  Tobias Warnecke,et al.  Histone variants in archaea - An undiscovered country. , 2022, Seminars in cell & developmental biology.

[18]  S. Bertilsson,et al.  Environmental paleomicrobiology: using DNA preserved in aquatic sediments to its full potential , 2022, Environmental microbiology.

[19]  Jeffrey S. Guasto,et al.  Self-transport of swimming bacteria is impaired by porous microstructure , 2022, Communications Physics.

[20]  J. Hultman,et al.  Candidatus Nitrosopolaris, a genus of putative ammonia-oxidizing archaea with a polar/alpine distribution , 2021, bioRxiv.

[21]  M. Dopson,et al.  Interplay between eutrophication and climate warming on bacterial communities in coastal sediments differs depending on water depth and oxygen history , 2021, Scientific Reports.

[22]  Tom O. Delmont Discovery of nondiazotrophic Trichodesmium species abundant and widespread in the open ocean , 2021, Proceedings of the National Academy of Sciences.

[23]  D. J. Meltzer,et al.  Late Quaternary dynamics of Arctic biota from ancient environmental genomics , 2021, Nature.

[24]  B. Baker,et al.  Large-scale protein level comparison of Deltaproteobacteria reveals cohesive metabolic groups , 2021, The ISME Journal.

[25]  M. Sullivan,et al.  Divergent Genomic Adaptations in the Microbiomes of Arctic Subzero Sea-Ice and Cryopeg Brines , 2021, Frontiers in Microbiology.

[26]  Daniel E. Williams,et al.  Eight Metagenome-Assembled Genomes Provide Evidence for Microbial Adaptation in 20,000- to 1,000,000-Year-Old Siberian Permafrost , 2021, Applied and environmental microbiology.

[27]  C. Pedrós-Alió Time travel in microorganisms. , 2021, Systematic and applied microbiology.

[28]  Christian Rinke,et al.  Recoding of stop codons expands the metabolic potential of two novel Asgardarchaeota lineages , 2021, ISME Communications.

[29]  A. Toussaint,et al.  PHROG: families of prokaryotic virus proteins clustered using remote homology , 2021, NAR genomics and bioinformatics.

[30]  Andreas Richter,et al.  Genomic insights into diverse bacterial taxa that degrade extracellular DNA in marine sediments , 2021, Nature Microbiology.

[31]  R. Hettich,et al.  Genomic reconstruction of fossil and living microorganisms in ancient Siberian permafrost , 2021, Microbiome.

[32]  J. Tison,et al.  A multimillion-year-old record of Greenland vegetation and glacial history preserved in sediment beneath 1.4 km of ice at Camp Century , 2021, Proceedings of the National Academy of Sciences.

[33]  T. Vishnivetskaya,et al.  Are permafrost microorganisms as old as permafrost? , 2021, FEMS microbiology ecology.

[34]  R. Chikhi,et al.  kmtricks: efficient and flexible construction of Bloom filters for large sequencing data collections , 2021, bioRxiv.

[35]  Daniel J. Blankenberg,et al.  Community-led, integrated, reproducible multi-omics with anvi’o , 2020, Nature Microbiology.

[36]  J. Olson,et al.  Environmental abiotic and biotic factors affecting the distribution and abundance of Naegleria fowleri , 2020, FEMS microbiology ecology.

[37]  R. Knight,et al.  Challenges in benchmarking metagenomic profilers , 2020, Nature Methods.

[38]  Rodrigo Lopez,et al.  The European Nucleotide Archive in 2020 , 2020, Nucleic Acids Res..

[39]  Vincent J. Denef,et al.  A genomic catalog of Earth’s microbiomes , 2020, Nature Biotechnology.

[40]  L. Hansen,et al.  Potential Rhodopsin and Bacteriochlorophyll-Based Dual Phototrophy in a High Arctic Glacier , 2020, bioRxiv.

[41]  S. Lackner,et al.  Identification of a Metagenome-Assembled Genome of an Uncultured Methyloceanibacter sp. Strain Acquired from an Activated Sludge System Used for Landfill Leachate Treatment , 2020, Microbiology Resource Announcements.

[42]  Tom O. Delmont,et al.  Unifying the known and unknown microbial coding sequence space , 2020, bioRxiv.

[43]  E. Koonin,et al.  Cressdnaviricota: a Virus Phylum Unifying Seven Families of Rep-Encoding Viruses with Single-Stranded, Circular DNA Genomes , 2020, Journal of Virology.

[44]  E. Dlugokencky,et al.  Reduced net methane emissions due to microbial methane oxidation in a warmer Arctic , 2020, Nature Climate Change.

[45]  Robert D. Finn,et al.  MGnify: the microbiome analysis resource in 2020 , 2019, Nucleic Acids Res..

[46]  T. Vishnivetskaya,et al.  Metagenome-Assembled Genome of USCα AHI, a Potential High-Affinity Methanotroph from Axel Heiberg Island, Canadian High Arctic , 2019, Microbiology Resource Announcements.

[47]  Sean L. Mackay,et al.  Two-million-year-old snapshots of atmospheric gases from Antarctic ice , 2019, Nature.

[48]  Barbara A. Bailey,et al.  Meta-SourceTracker: application of Bayesian source tracking to shotgun metagenomics , 2019, PeerJ.

[49]  N. K. Larsen,et al.  The timing of fjord formation and early glaciations in North and Northeast Greenland , 2019, Geology.

[50]  S. Minot,et al.  In silico benchmarking of metagenomic tools for coding sequence detection reveals the limits of sensitivity and precision , 2018, BMC Bioinformatics.

[51]  Tapomoy Bhattacharjee,et al.  Bacterial hopping and trapping in porous media , 2019, Nature Communications.

[52]  R. Margesin,et al.  Microbial ecology of the cryosphere (glacial and permafrost habitats): current knowledge , 2019, Applied Microbiology and Biotechnology.

[53]  B. Nunn,et al.  Microbial metabolism and adaptations in Atribacteria-dominated methane hydrate sediments , 2019, bioRxiv.

[54]  Silvio C. E. Tosatto,et al.  The Pfam protein families database in 2019 , 2018, Nucleic Acids Res..

[55]  Donovan H. Parks,et al.  A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life , 2018, Nature Biotechnology.

[56]  M. Jung,et al.  Genomic Insights Into the Acid Adaptation of Novel Methanotrophs Enriched From Acidic Forest Soils , 2018, Front. Microbiol..

[57]  Changsheng Li,et al.  Genome-centric view of carbon processing in thawing permafrost , 2018, Nature.

[58]  J. Köster Reproducible data analysis with Snakemake , 2018 .

[59]  Zhenglu Yang,et al.  dbCAN2: a meta server for automated carbohydrate-active enzyme annotation , 2018, Nucleic Acids Res..

[60]  Jia Gu,et al.  fastp: an ultra-fast all-in-one FASTQ preprocessor , 2018, bioRxiv.

[61]  B. Schuster,et al.  Archaeal S-Layers: Overview and Current State of the Art , 2017, Front. Microbiol..

[62]  C. Beer,et al.  Methane production as key to the greenhouse gas budget of thawing permafrost , 2017, Nature Climate Change.

[63]  Evan Bolton,et al.  Database resources of the National Center for Biotechnology Information , 2017, Nucleic Acids Res..

[64]  Johannes Söding,et al.  MMseqs2: sensitive protein sequence searching for the analysis of massive data sets , 2017, bioRxiv.

[65]  Karen Kafadar,et al.  Letter-Value Plots: Boxplots for Large Data , 2017 .

[66]  S. Langenheder,et al.  The legacy of the past : effects of historical processes on microbial metacommunities , 2017 .

[67]  R. Alley,et al.  Greenland was nearly ice-free for extended periods during the Pleistocene , 2016, Nature.

[68]  Ben Nichols,et al.  VSEARCH: a versatile open source tool for metagenomics , 2016, PeerJ.

[69]  Georgios A. Pavlopoulos,et al.  Uncovering Earth’s virome , 2016, Nature.

[70]  Eske Willerslev,et al.  Postglacial viability and colonization in North America’s ice-free corridor , 2016, Nature.

[71]  S. Zirah,et al.  Preservation of Archaeal Surface Layer Structure During Mineralization , 2016, Scientific Reports.

[72]  M. Hoppert,et al.  Characterization and phylogeny of a novel methanotroph, Methyloglobulus morosus gen. nov., spec. nov. , 2014, Systematic and applied microbiology.

[73]  P. Crill,et al.  Discovery of a novel methanogen prevalent in thawing permafrost , 2014, Nature Communications.

[74]  P. Taberlet,et al.  Fifty Thousand Years of Arctic Vegetation and Megafaunal Diet 1 Reconstruction of Arctic Vegetation from Permafrost Samples 121 , 2022 .

[75]  Susumu Goto,et al.  Data, information, knowledge and principle: back to metabolism in KEGG , 2013, Nucleic Acids Res..

[76]  Diana R. Nemergut,et al.  Patterns and Processes of Microbial Community Assembly , 2013, Microbiology and Molecular Reviews.

[77]  E. Dinsdale,et al.  Metagenomic Insights into Anaerobic Metabolism along an Arctic Peat Soil Profile , 2013, PloS one.

[78]  T. Urich,et al.  Organic carbon transformations in high-Arctic peat soils: key functions and microorganisms , 2012, The ISME Journal.

[79]  D. Jézéquel,et al.  Stratification of Archaea in the Deep Sediments of a Freshwater Meromictic Lake: Vertical Shift from Methanogenic to Uncultured Archaeal Lineages , 2012, PloS one.

[80]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[81]  Pete Smith,et al.  Microorganisms and climate change: terrestrial feedbacks and mitigation options , 2010, Nature Reviews Microbiology.

[82]  M. Thomashow,et al.  The Genome Sequence of Psychrobacter arcticus 273-4, a Psychroactive Siberian Permafrost Bacterium, Reveals Mechanisms for Adaptation to Low-Temperature Growth , 2010, Applied and Environmental Microbiology.

[83]  Guido Grosse,et al.  Land cover classification of tundra environments in the Arctic Lena Delta based on Landsat 7 ETM+ data and its application for upscaling of methane emissions , 2009 .

[84]  E. Delong,et al.  The Microbial Engines That Drive Earth's Biogeochemical Cycles , 2008, Science.

[85]  T. Fenchel Motility of bacteria in sediments , 2008 .

[86]  Gilbert GREUB,et al.  Protochlamydia naegleriophila as Etiologic Agent of Pneumonia , 2008, Emerging infectious diseases.

[87]  Philip L. F. Johnson,et al.  Patterns of damage in genomic DNA sequences from a Neandertal , 2007, Proceedings of the National Academy of Sciences.

[88]  R. Nielsen,et al.  Ancient bacteria show evidence of DNA repair , 2007, Proceedings of the National Academy of Sciences.

[89]  R. Conrad,et al.  Community structure of Archaea and Bacteria in a profundal lake sediment Lake Kinneret (Israel). , 2007, Systematic and applied microbiology.

[90]  P. Claus,et al.  Vertical distribution of structure and function of the methanogenic archaeal community in Lake Dagow sediment. , 2005, Environmental microbiology.

[91]  C. Wiuf,et al.  Long-term persistence of bacterial DNA , 2004, Current Biology.

[92]  J. Bockheim,et al.  Factors Affecting the Distribution of Populus balsamifera on the North Slope of Alaska, U.S.A , 2003 .

[93]  D. B. Nedwell,et al.  Analysis of the Sulfate-Reducing Bacterial and Methanogenic Archaeal Populations in Contrasting Antarctic Sediments , 2003, Applied and Environmental Microbiology.

[94]  Carsten Wiuf,et al.  Diverse Plant and Animal Genetic Records from Holocene and Pleistocene Sediments , 2003, Science.

[95]  A. Schramm,et al.  Hydrogenotrophic Methanogenesis by Moderately Acid-Tolerant Methanogens of a Methane-Emitting Acidic Peat , 2003, Applied and Environmental Microbiology.

[96]  O. Bennike,et al.  Late Pliocene Greenland: The Kap Kobenhavn Formation in North Greenland , 2001 .

[97]  W. Liesack,et al.  Vertical Distribution of Methanogens in the Anoxic Sediment of Rotsee (Switzerland) , 1999, Applied and Environmental Microbiology.

[98]  T. E. Thompson,et al.  Characterization of Propionispira arboris gen. nov. sp. nov., a Nitrogen-fixing Anaerobe Common to Wetwoods of Living Trees , 1982 .

[99]  K. Kogure,et al.  Bacterial motility: links to the environment and a driving force for microbial physics. , 2006, FEMS microbiology ecology.