Tail and moment estimates for chaoses generated by symmetric random variables with logarithmically concave tails

We present two-sided estimates of moments and tails of polynomial chaoses of order at most three generated by independent symmetric random variables with log-concave tails as well as for chaoses of arbitrary order generated by independent symmetric exponential variables. The estimates involve only deterministic quantities and are optimal up to constants depending only on the order of the chaos variable.

[1]  V. Peña Decoupling and Khintchine's Inequalities for $U$-Statistics , 1992 .

[2]  V. Peña,et al.  Decoupling Inequalities for the Tail Probabilities of Multivariate $U$-Statistics , 1993, math/9309211.

[3]  R. Latala Estimates of moments and tails of Gaussian chaoses , 2005, math/0505313.

[4]  R. Dudley The Sizes of Compact Subsets of Hilbert Space and Continuity of Gaussian Processes , 1967 .

[5]  Tail and moment estimates for sums of independent random vectors with logarithmically concave tails , 1996 .

[6]  R. Lochowski MOMENT AND TAIL ESTIMATES FOR MULTIDIMENSIONAL CHAOSES GENERATED BY SYMMETRIC RANDOM VARIABLES WITH LOGARITHMICALLY CONCAVE TAILS , 2022 .

[7]  A. Bonami Étude des coefficients de Fourier des fonctions de $L^p(G)$ , 1970 .

[8]  Radoslaw Adamczak,et al.  Moment inequalities for U-statistics , 2006 .

[9]  E. Giné,et al.  Decoupling: From Dependence to Independence , 1998 .

[10]  J. Kuelbs Probability on Banach spaces , 1978 .

[11]  Rafa l Lata la,et al.  Moment and tail estimates for multidimensional chaoses generated by positive random variables with logarithmically concave tails , 2005 .

[12]  Stanisław Kwapień,et al.  Decoupling Inequalities for Polynomial Chaos , 1987 .

[13]  S. Kwapień,et al.  Tail and moment estimates for sums of independent random variables with logarithmically concave tails , 1995 .

[14]  Edward Nelson The free Markoff field , 1973 .

[15]  L. Gross LOGARITHMIC SOBOLEV INEQUALITIES. , 1975 .

[16]  E. Giné,et al.  On decoupling, series expansions, and tail behavior of chaos processes , 1993 .

[17]  Victor H. de la Pena,et al.  Bounds on the tail probability of u-statistics and quadratic forms , 1993 .

[18]  Rados Law Adamczak,et al.  Logarithmic Sobolev inequalities and concentration of measure for convex functions and polynomial chaoses , 2005 .

[19]  R. Latala Tail and moment estimates for some types of chaos , 1999 .

[20]  M. Talagrand,et al.  Probability in Banach Spaces: Isoperimetry and Processes , 1991 .