Specific niche requirements underpin multidecadal range edge stability, but may introduce barriers for climate change adaptation

To investigate some of the environmental variables underpinning the past and present distribution of an ecosystem engineer near its poleward range edge.

[1]  F. Viard,et al.  Looking for diversity in all the right places? Genetic diversity is highest in peripheral populations of the reef-building polychaete Sabellaria alveolata , 2021, Marine Biology.

[2]  E. Corre,et al.  Seascape genomics reveals population isolation in the reef-building honeycomb worm, Sabellaria alveolata (L.) , 2019, BMC Evolutionary Biology.

[3]  K. Howell,et al.  Reverse engineering field-derived vertical distribution profiles to infer larval swimming behaviors , 2019, Proceedings of the National Academy of Sciences.

[4]  M. Rivadeneira,et al.  On the importance of habitat continuity for delimiting biogeographic regions and shaping richness gradients. , 2019, Ecology letters.

[5]  C. Corporeau,et al.  Connecting organic to mineral: How the physiological state of an ecosystem-engineer is linked to its habitat structure , 2019, Ecological Indicators.

[6]  Carrie V. Kappel,et al.  Parsing human and biophysical drivers of coral reef regimes , 2019, Proceedings of the Royal Society B.

[7]  J. Wolf,et al.  Future Wave Conditions of Europe, in Response to High‐End Climate Change Scenarios , 2018, Journal of Geophysical Research: Oceans.

[8]  Jane Elith,et al.  blockCV: an R package for generating spatially or environmentally separated folds for k-fold cross-validation of species distribution models , 2018, bioRxiv.

[9]  N. Holbrook,et al.  Differential vulnerability to climate change yields novel deep-reef communities , 2018, Nature Climate Change.

[10]  Robert Marsh,et al.  Biologists ignore ocean weather at their peril , 2018, Nature.

[11]  Stanislas F. Dubois,et al.  Interplay between abiotic factors and species assemblages mediated by the ecosystem engineer Sabellaria alveolata (Annelida: Polychaeta) , 2018 .

[12]  J. E. Byers,et al.  Ocean currents and competitive strength interact to cluster benthic species range boundaries in the coastal ocean , 2017 .

[13]  Sabrina Lo Brutto,et al.  The amphipod assemblages of Sabellaria alveolata reefs from the NW coast of Portugal: An account of the present knowledge, new records, and some biogeographic considerations , 2017, Marine Biodiversity.

[14]  Richard C. Thompson,et al.  OCEAN SPRAWL: CHALLENGES AND OPPORTUNITIES FOR BIODIVERSITY MANAGEMENT IN A CHANGING WORLD , 2016 .

[15]  Stanislas F. Dubois,et al.  Human impacts on biogenic habitats: Effects of experimental trampling on Sabellaria alveolata (Linnaeus, 1767) reefs , 2016 .

[16]  Miguel B. Araújo,et al.  sdm: a reproducible and extensible R platform for species distribution modelling , 2016 .

[17]  Richard C. Thompson,et al.  Facing the future: the importance of substratum features for ecological engineering of artificial habitats in the rocky intertidal , 2016 .

[18]  Laura E. Bush Stability and variability of the ecosystem engineer Sabellaria alveolata on differing temporal and spatial scales , 2016 .

[19]  Peter I. Miller,et al.  Basking sharks and oceanographic fronts: quantifying associations in the north‐east Atlantic , 2015 .

[20]  N. Mieszkowska,et al.  Historical comparisons reveal multiple drivers of decadal change of an ecosystem engineer at the range edge , 2015, Ecology and evolution.

[21]  Daniel E. Schindler,et al.  The portfolio concept in ecology and evolution , 2015 .

[22]  Sabrina Lo Brutto,et al.  DNA-Barcoding to solve the tricky case of co-occuring Sabellaria (ANNELIDA) species in the Mediterranean Sea , 2015 .

[23]  D. Wethey,et al.  Population structure and spread of the polychaete Diopatra biscayensis along the French Atlantic coast: human-assisted transport by-passes larval dispersal. , 2014, Marine environmental research.

[24]  S J Hawkins,et al.  The role of sustained observations in tracking impacts of environmental change on marine biodiversity and ecosystems , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[25]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[26]  N. Mieszkowska,et al.  Impacts of climate change on intertidal habitats , 2014 .

[27]  Richard C. Thompson,et al.  Data rescue and re-use: recycling old information to address new policy concerns , 2013 .

[28]  S. Neill,et al.  Physical and biological controls on larval dispersal and connectivity in a highly energetic shelf sea , 2013 .

[29]  M. Burrows Influences of wave fetch, tidal flow and ocean colour on subtidal rocky communities , 2012 .

[30]  Franklin B. Schwing,et al.  The Pace of Shifting Climate in Marine and Terrestrial Ecosystems , 2011, Science.

[31]  Louise B. Firth,et al.  Air temperature and winter mortality: Implications for the persistence of the invasive mussel, Perna viridis in the intertidal zone of the south-eastern United States , 2011 .

[32]  S. Ayata,et al.  How does the connectivity between populations mediate range limits of marine invertebrates? A case study of larval dispersal between the Bay of Biscay and the English Channel (North-East Atlantic) , 2010 .

[33]  R. O'riordan,et al.  Reproduction of the biogenic reef-forming honeycomb worm Sabellaria alveolata in Ireland , 2010, Journal of the Marine Biological Association of the United Kingdom.

[34]  C. Field,et al.  The velocity of climate change , 2009, Nature.

[35]  J. Green,et al.  The structure of dissipation in the western Irish Sea front , 2009 .

[36]  G. Cambon,et al.  Observations of the Ushant tidal front in September 2007 , 2009 .

[37]  R. Ray,et al.  Assimilation of altimetry data for nonlinear shallow-water tides: Quarter-diurnal tides of the Northwest European Shelf , 2009 .

[38]  G. Turner,et al.  The influence of oceanographic fronts and early-life-history traits on connectivity among littoral fish species , 2009, Proceedings of the National Academy of Sciences.

[39]  J Elith,et al.  A working guide to boosted regression trees. , 2008, The Journal of animal ecology.

[40]  E. Gosling,et al.  Genetic characterization of hybrid mussel (Mytilus) populations on Irish coasts , 2008, Journal of the Marine Biological Association of the United Kingdom.

[41]  R. Devoy,et al.  Coastal Vulnerability and the Implications of Sea-Level Rise for Ireland , 2008 .

[42]  P.,et al.  Observations of the Ushant tidal front in September 2007 , 2008 .

[43]  S. Banks,et al.  Oceanic variability and coastal topography shape genetic structure in a long-dispersing sea urchin. , 2007, Ecology.

[44]  J. Sharples Potential impacts of the spring-neap tidal cycle on shelf sea primary production. , 2007 .

[45]  M. Chapman,et al.  Patterns of distribution of annelids: taxonomic and spatial inconsistencies between two biogeographic provinces and across multiple spatial scales , 2007 .

[46]  N. Mieszkowska,et al.  Long-term changes in the geographic distribution and population structures of Osilinus lineatus (Gastropoda: Trochidae) in Britain and Ireland , 2007, Journal of the Marine Biological Association of the United Kingdom.

[47]  Stanislas F. Dubois,et al.  Effects of epibionts on Sabellaria alveolata (L.) biogenic reefs and their associated fauna in the Bay of Mont Saint-Michel , 2006 .

[48]  D. Mcgrath,et al.  Using historical data to detect temporal changes in the abundances of intertidal species on Irish shores , 2005, Journal of the Marine Biological Association of the United Kingdom.

[49]  Richard C. Thompson,et al.  Marine biodiversity and climate change: assessing and predicting the influence of climatic change using intertidal rocky shore biota , 2005 .

[50]  Keston W. Smith,et al.  Seasonal mean circulation on the Irish shelf—a model-generated climatology , 2004 .

[51]  Campbell O. Webb,et al.  Phylogenies and Community Ecology , 2002 .

[52]  Stanislas F. Dubois,et al.  Biodiversity associated with Sabellaria alveolata (Polychaeta: Sabellariidae) reefs: effects of human disturbances , 2002, Journal of the Marine Biological Association of the United Kingdom.

[53]  James G. Surles,et al.  Model-Dependent Variance Inflation Factor Cutoff Values , 2002 .

[54]  G. Egbert,et al.  Efficient Inverse Modeling of Barotropic Ocean Tides , 2002 .

[55]  Steven D. Gaines,et al.  Temperature or Transport? Range Limits in Marine Species Mediated Solely by Flow , 2000, The American Naturalist.

[56]  S. Gilman,et al.  CLIMATE‐RELATED CHANGE IN AN INTERTIDAL COMMUNITY OVER SHORT AND LONG TIME SCALES , 1999 .

[57]  C. Parmesan,et al.  Poleward shifts in geographical ranges of butterfly species associated with regional warming , 1999, Nature.

[58]  George H. Leonard,et al.  THE ROLE OF POSITIVE INTERACTIONS IN COMMUNITIES: LESSONS FROM INTERTIDAL HABITATS , 1997 .

[59]  A. Orsi,et al.  On the meridional extent and fronts of the Antarctic Circumpolar Current , 1995 .

[60]  S. Hawkins,et al.  Seventy years' observations of changes in distribution and abundance of zooplankton and intertidal organisms in the western English Channel in relation to rising sea temperature , 1995 .

[61]  M. Déqué,et al.  The ARPEGE/IFS atmosphere model: a contribution to the French community climate modelling , 1994 .

[62]  J. Pineda Internal tidal bores in the nearshore: warm-water fronts, seaward gravity currents and the onshore transport of neustonic larvae , 1994 .

[63]  A. Southward Forty Years of Changes in Species Composition and Population Density of Barnacles on a Rocky Shore Near Plymouth , 1991, Journal of the Marine Biological Association of the United Kingdom.

[64]  D. Crisp The influence of tidal fronts on the distribution of intertidal fauna and flora , 1989 .

[65]  R. Pingree,et al.  Tidal fronts on the shelf seas around the British Isles , 1978 .

[66]  J. Hunter,et al.  Fronts in the Irish Sea , 1974, Nature.

[67]  D. P. Wilson The settlement behaviour of the larvae of Sabellaria alveolata (L.) , 1968, Journal of the Marine Biological Association of the United Kingdom.

[68]  D. Crisp,et al.  The Effects of the Severe Winter of 1962-63 on Marine Life in Britain , 1964 .

[69]  L. W. Hutchins The Bases for Temperature Zonation in Geographical Distribution , 1947 .