An assemblage of Frankia Cluster II strains from California contains the canonical nod genes and also the sulfotransferase gene nodH

[1]  D. R. Hoagland,et al.  The Water-Culture Method for Growing Plants Without Soil , 2018 .

[2]  K. Morris,et al.  Permanent Draft Genome Sequence for Frankia sp. Strain CeD, a Nitrogen-Fixing Actinobacterium Isolated from the Root Nodules of Casuarina equistifolia Grown in Senegal , 2016, Genome Announcements.

[3]  K. Morris,et al.  Permanent Draft Genome Sequences for Two Variants of Frankia sp. Strain CpI1, the First Frankia Strain Isolated from Root Nodules of Comptonia peregrina , 2016, Genome Announcements.

[4]  K. Morris,et al.  Permanent draft genome sequence of Frankia sp. strain AvcI1, a nitrogen-fixing actinobacterium isolated from the root nodules of Alnus viridis subsp. crispa grown in Canada , 2017 .

[5]  Stefan P. Albaum,et al.  Development of a Rhizoctonia solani AG1-IB Specific Gene Model Enables Comparative Genome Analyses between Phytopathogenic R. solani AG1-IA, AG1-IB, AG3 and AG8 Isolates , 2015, PloS one.

[6]  K. Morris,et al.  Permanent draft genome sequence of Frankia sp. strain ACN1ag, a nitrogen-fixing actinobacterium isolated from the root nodules of Alnus glutinosa , 2018 .

[7]  A. Lapidus,et al.  Genome Sequence of the Atypical Symbiotic Frankia R43 Strain, a Nitrogen-Fixing and Hydrogen-Producing Actinobacterium , 2015, Genome Announcements.

[8]  E. Giraud,et al.  Nod Factor-Independent Nodulation in Aeschynomene evenia Required the Common Plant-Microbe Symbiotic Toolkit1 , 2015, Plant Physiology.

[9]  L. Tisa,et al.  Cultivating the uncultured: growing the recalcitrant cluster-2 Frankia strains , 2015, Scientific Reports.

[10]  N. Kyrpides,et al.  Draft Genome Sequence of Frankia sp. Strain DC12, an Atypical, Noninfective, Ineffective Isolate from Datisca cannabina , 2015, Genome Announcements.

[11]  M. Facciotti,et al.  Candidatus Frankia Datiscae Dg1, the Actinobacterial Microsymbiont of Datisca glomerata, Expresses the Canonical nod Genes nodABC in Symbiosis with Its Host Plant , 2015, PloS one.

[12]  P. Normand,et al.  Bacterial‐induced calcium oscillations are common to nitrogen‐fixing associations of nodulating legumes and non‐legumes , 2015, The New phytologist.

[13]  H. Curtidor,et al.  Mce4F Mycobacterium tuberculosis protein peptides can inhibit invasion of human cell lines. , 2015, Pathogens and disease.

[14]  H. Peter Linder,et al.  Do Mediterranean‐type ecosystems have a common history?—Insights from the Buckthorn family (Rhamnaceae) , 2015, Evolution; international journal of organic evolution.

[15]  S. Thirup,et al.  An intermolecular binding mechanism involving multiple LysM domains mediates carbohydrate recognition by an endopeptidase , 2015, Acta crystallographica. Section D, Biological crystallography.

[16]  A. Pühler,et al.  Complete genome sequence of the methanogenic neotype strain Methanobacterium formicicum MF(T.). , 2014, Journal of biotechnology.

[17]  Philippe Normand,et al.  Phylogeny of the class Actinobacteria revisited in the light of complete genomes. The orders 'Frankiales' and Micrococcales should be split into coherent entities: proposal of Frankiales ord. nov., Geodermatophilales ord. nov., Acidothermales ord. nov. and Nakamurellales ord. nov. , 2014, International journal of systematic and evolutionary microbiology.

[18]  C. Médigue,et al.  Genome Features of the Endophytic Actinobacterium Micromonospora lupini Strain Lupac 08: On the Process of Adaptation to an Endophytic Life Style? , 2014, PloS one.

[19]  K. Kucho,et al.  Different dynamics of genome content shuffling among host-specificity groups of the symbiotic actinobacterium Frankia , 2014, BMC Genomics.

[20]  Jens Kattge,et al.  A single evolutionary innovation drives the deep evolution of symbiotic N2-fixation in angiosperms , 2014, Nature Communications.

[21]  K. Morris,et al.  Draft Genome Sequence of Frankia sp. Strain BMG5.23, a Salt-Tolerant Nitrogen-Fixing Actinobacterium Isolated from the Root Nodules of Casuarina glauca Grown in Tunisia , 2014, Genome Announcements.

[22]  K. Morris,et al.  Draft Genome Sequence of Frankia sp. Strain Thr, a Nitrogen-Fixing Actinobacterium Isolated from the Root Nodules of Casuarina cunninghamiana Grown in Egypt , 2014, Genome Announcements.

[23]  Jens Stoye,et al.  ReadXplorer—visualization and analysis of mapped sequences , 2014, Bioinform..

[24]  P. Normand,et al.  Absence of Cospeciation between the Uncultured Frankia Microsymbionts and the Disjunct Actinorhizal Coriaria Species , 2014, BioMed research international.

[25]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[26]  K. Morris,et al.  Draft Genome Sequence of Frankia sp. Strain CcI6, a Salt-Tolerant Nitrogen-Fixing Actinobacterium Isolated from the Root Nodule of Casuarina cunninghamiana , 2014, Genome Announcements.

[27]  A. Pühler,et al.  Complete genome sequence of the hydrogenotrophic Archaeon Methanobacterium sp. Mb1 isolated from a production-scale biogas plant. , 2013, Journal of biotechnology.

[28]  A. Pühler,et al.  Metagenome analyses reveal the influence of the inoculant Lactobacillus buchneri CD034 on the microbial community involved in grass ensiling. , 2013, Journal of biotechnology.

[29]  A. Goesmann,et al.  Establishment and interpretation of the genome sequence of the phytopathogenic fungus Rhizoctonia solani AG1-IB isolate 7/3/14. , 2013, Journal of biotechnology.

[30]  Natalia N. Ivanova,et al.  Draft Genome Sequence of Frankia sp. Strain BMG5.12, a Nitrogen-Fixing Actinobacterium Isolated from Tunisian Soils , 2013, Genome Announcements.

[31]  Natalia N. Ivanova,et al.  Draft Genome Sequence of Frankia sp. Strain BCU110501, a Nitrogen-Fixing Actinobacterium Isolated from Nodules of Discaria trinevis , 2013, Genome Announcements.

[32]  S. Svistoonoff,et al.  The Independent Acquisition of Plant Root Nitrogen-Fixing Symbiosis in Fabids Recruited the Same Genetic Pathway for Nodule Organogenesis , 2013, PloS one.

[33]  Kai Blin,et al.  antiSMASH 2.0—a versatile platform for genome mining of secondary metabolite producers , 2013, Nucleic Acids Res..

[34]  N. Kyrpides,et al.  Draft Genome Sequence of Frankia sp. Strain QA3, a Nitrogen-Fixing Actinobacterium Isolated from the Root Nodule of Alnus nitida , 2013, Genome Announcements.

[35]  G. Oldroyd Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants , 2013, Nature Reviews Microbiology.

[36]  Natalia N. Ivanova,et al.  Draft Genome Sequence of Frankia sp. Strain CN3, an Atypical, Noninfective (Nod–) Ineffective (Fix–) Isolate from Coriaria nepalensis , 2013, Genome Announcements.

[37]  J. Willemse,et al.  Mammalian cell entry genes in Streptomyces may provide clues to the evolution of bacterial virulence , 2013, Scientific Reports.

[38]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[39]  C. Yesson,et al.  Past Climate Change and Plant Evolution in Western North America: A Case Study in Rosaceae , 2012, PloS one.

[40]  A. Goesmann,et al.  Insights into the completely annotated genome of Lactobacillus buchneri CD034, a strain isolated from stable grass silage. , 2012, Journal of biotechnology.

[41]  J. Stoye,et al.  The complete genome sequence of the acarbose producer Actinoplanes sp. SE50/110 , 2012, BMC Genomics.

[42]  Natalia N. Ivanova,et al.  Genome Sequence of “Candidatus Frankia datiscae” Dg1, the Uncultured Microsymbiont from Nitrogen-Fixing Root Nodules of the Dicot Datisca glomerata , 2011, Journal of bacteriology.

[43]  Natalia N. Ivanova,et al.  Complete genome sequence of Mycobacterium sp. strain (Spyr1) and reclassification to Mycobacterium gilvum Spyr1 , 2011, Standards in genomic sciences.

[44]  J. Setubal,et al.  Complete genome sequencing of Agrobacterium sp. H13-3, the former Rhizobium lupini H13-3, reveals a tripartite genome consisting of a circular and a linear chromosome and an accessory plasmid but lacking a tumor-inducing Ti-plasmid. , 2011, Journal of biotechnology.

[45]  Alexander Goesmann,et al.  High-quality genome sequence of Pichia pastoris CBS7435. , 2011, Journal of biotechnology.

[46]  Kai Blin,et al.  antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences , 2011, Nucleic Acids Res..

[47]  Ramón Doallo,et al.  ProtTest 3: fast selection of best-fit models of protein evolution , 2011, Bioinform..

[48]  R. Wing,et al.  LysM-Type Mycorrhizal Receptor Recruited for Rhizobium Symbiosis in Nonlegume Parasponia , 2011, Science.

[49]  S. Renner,et al.  Phylogenetic relationships in the order Cucurbitales and a new classification of the gourd family (Cucurbitaceae) , 2011 .

[50]  Jean Dénarié,et al.  Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza , 2011, Nature.

[51]  Ramón Doallo,et al.  ProtTest-HPC: Fast Selection of Best-Fit Models of Protein Evolution , 2010, Euro-Par Workshops.

[52]  N. Perna,et al.  progressiveMauve: Multiple Genome Alignment with Gene Gain, Loss and Rearrangement , 2010, PloS one.

[53]  O. Gascuel,et al.  New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. , 2010, Systematic biology.

[54]  Jens Stoye,et al.  BIOINFORMATICS APPLICATIONS NOTE , 2009 .

[55]  J. Wen,et al.  Evolution of the Madrean–Tethyan disjunctions and the North and South American amphitropical disjunctions in plants , 2009 .

[56]  Alla Lapidus,et al.  Complete genome of the cellulolytic thermophile Acidothermus cellulolyticus 11B provides insights into its ecophysiological and evolutionary adaptations. , 2009, Genome research.

[57]  Alexander Goesmann,et al.  EDGAR: A software framework for the comparative analysis of prokaryotic genomes , 2009, BMC Bioinformatics.

[58]  T. Silhavy,et al.  An ABC transport system that maintains lipid asymmetry in the Gram-negative outer membrane , 2009, Proceedings of the National Academy of Sciences.

[59]  L. Dijkhuizen,et al.  The Actinobacterial mce4 Locus Encodes a Steroid Transporter* , 2008, Journal of Biological Chemistry.

[60]  Martin Parniske,et al.  Arbuscular mycorrhiza: the mother of plant root endosymbioses , 2008, Nature Reviews Microbiology.

[61]  Laurent Laplaze,et al.  SymRK defines a common genetic basis for plant root endosymbioses with arbuscular mycorrhiza fungi, rhizobia, and Frankiabacteria , 2008, Proceedings of the National Academy of Sciences.

[62]  Katharina Markmann,et al.  Functional Adaptation of a Plant Receptor- Kinase Paved the Way for the Evolution of Intracellular Root Symbioses with Bacteria , 2008, PLoS biology.

[63]  Jack A. M. Leunissen,et al.  Turning CFCs into salt. , 1996, Nucleic Acids Res..

[64]  Alexander F. Auch,et al.  MEGAN analysis of metagenomic data. , 2007, Genome research.

[65]  Eugene Goltsman,et al.  Genome characteristics of facultatively symbiotic Frankia sp. strains reflect host range and host plant biogeography. , 2006, Genome research.

[66]  K. Konstantinidis,et al.  Genomic insights that advance the species definition for prokaryotes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[67]  D. Potter,et al.  Low genetic diversity among Frankia spp. strains nodulating sympatric populations of actinorhizal species of Rosaceae, Ceanothus (Rhamnaceae) and Datisca glomerata (Datiscaceae) west of the Sierra Nevada (California). , 2004, Canadian journal of microbiology.

[68]  M. P. Cummings PHYLIP (Phylogeny Inference Package) , 2004 .

[69]  M. Hattori,et al.  The complete genomic sequence of Nocardia farcinica IFM 10152. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[70]  Robert C. Edgar,et al.  MUSCLE: a multiple sequence alignment method with reduced time and space complexity , 2004, BMC Bioinformatics.

[71]  F. Blattner,et al.  Mauve: multiple alignment of conserved genomic sequence with rearrangements. , 2004, Genome research.

[72]  M. Clawson,et al.  Assessing the phylogeny of Frankia-actinorhizal plant nitrogen-fixing root nodule symbioses with Frankia 16S rRNA and glutamine synthetase gene sequences. , 2004, Molecular phylogenetics and evolution.

[73]  R. Giegerich,et al.  GenDB--an open source genome annotation system for prokaryote genomes. , 2003, Nucleic acids research.

[74]  F. Debellé,et al.  Structural and functional comparison of Frankia root hair deforming factor and rhizobia Nod factor , 1999 .

[75]  M. Clawson,et al.  Natural Diversity of Frankia Strains in Actinorhizal Root Nodules from Promiscuous Hosts in the Family Myricaceae , 1999, Applied and Environmental Microbiology.

[76]  S. Ensign,et al.  Evidence for an Inducible Nucleotide-Dependent Acetone Carboxylase in Rhodococcus rhodochrousB276 , 1999, Journal of bacteriology.

[77]  W. Silvester,et al.  Typical Frankia infect actinorhizal plants exotic to New Zealand , 1997 .

[78]  P. Normand,et al.  Direct characterization of Frankia and of close phyletic neighbors from an Alnus viridis rhizosphere , 1997 .

[79]  S. Swensen THE EVOLUTION OF ACTINORHIZAL SYMBIOSES: EVIDENCE FOR MULTIPLE ORIGINS OF THE SYMBIOTIC ASSOCIATION , 1996 .

[80]  W. Silvester,et al.  Amplification of 16S rRNA genes from Frankia strains in root nodules of Ceanothus griseus, Coriaria arborea, Coriaria plumosa, Discaria toumatou, and Purshia tridentata , 1996, Applied and environmental microbiology.

[81]  D. Soltis,et al.  Chloroplast gene sequence data suggest a single origin of the predisposition for symbiotic nitrogen fixation in angiosperms. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[82]  R. Mellor,et al.  Structural modifications in Rhizobium meliloti Nod factors influence their stability against hydrolysis by root chitinases , 1994 .

[83]  K. Huss-Danell,et al.  Response of nitrogenase to altered carbon supply in a Frankia‐Alnus incana symbiosis , 1991 .

[84]  P. Grimont,et al.  Deoxyribonucleic Acid Relatedness among Members of the Genus Frankia , 1989 .

[85]  C. Rodríguez-Barrueco,et al.  The effect of pH on nodulation and growth ofCoriaria myrtifolia L. , 1978, Plant and Soil.

[86]  Harold A. Mooney,et al.  Mediterranean type ecosystems. Origin and structure , 1975, Pedobiologia.

[87]  BOTANiCAL Gazette,et al.  Handbook of Soil Science , 1933, Botanical Gazette.

[88]  L. Tisa,et al.  Chitinase-resistant hydrophilic symbiotic factors secreted by Frankia activate both Ca(2+) spiking and NIN gene expression in the actinorhizal plant Casuarina glauca. , 2016, The New phytologist.

[89]  P. Vandamme,et al.  DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. , 2007, International journal of systematic and evolutionary microbiology.

[90]  Derrick J. Zwickl Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion , 2006 .

[91]  M. Hasebe,et al.  Molecular phylogeny of Coriaria, with special emphasis on the disjunct distribution. , 2000, Molecular phylogenetics and evolution.

[92]  A. Liston Biogeographic relationships between the mediterranean and north american floras: insights from molecular data , 1997 .

[93]  P. Normand,et al.  Molecular phylogeny of the genus Frankia and related genera and emendation of the family Frankiaceae. , 1996, International journal of systematic bacteriology.

[94]  Rainer Horn,et al.  Handbook of soil science. , 1996 .

[95]  L. Rieseberg,et al.  Morphological Stasis abd Molecular Divergence in the Intercontinental Disjunct Genus Datisca (Datiscaceae) , 1989 .

[96]  M. McGlone,et al.  The effect of recent volcanic events and climatic changes on the vegetation of Mt Egmont (Mt Taranaki), New Zealand , 1988 .

[97]  E. Pahlich,et al.  A rapid DNA isolation procedure for small quantities of fresh leaf tissue , 1980 .

[98]  D. I. Axelrod Evolution and Biogeography of Madrean-Tethyan Sclerophyll Vegetation , 1975 .

[99]  D. I. Axelrod History of the Mediterranean Ecosystem in California , 1973 .

[100]  Gapped BLAST and PSI-BLAST: A new , 1997 .