Big, Deep, and Smart Data in Scanning Probe Microscopy.

Scanning probe microscopy (SPM) techniques have opened the door to nanoscience and nanotechnology by enabling imaging and manipulation of the structure and functionality of matter at nanometer and atomic scales. Here, we analyze the scientific discovery process in SPM by following the information flow from the tip-surface junction, to knowledge adoption by the wider scientific community. We further discuss the challenges and opportunities offered by merging SPM with advanced data mining, visual analytics, and knowledge discovery technologies.

[1]  Nazanin Bassiri-Gharb,et al.  Multidimensional dynamic piezoresponse measurements. Unraveling local relaxation behavior in relaxor-ferroelectrics via big data , 2015 .

[2]  Stephen Jesse,et al.  High resolution electromechanical imaging of ferroelectric materials in a liquid environment by piezoresponse force microscopy. , 2006, Physical review letters.

[3]  Sergei V. Kalinin,et al.  Scanning Probe Microscopy for Energy Research , 2013 .

[4]  Y. Martin,et al.  Magnetic imaging by ‘‘force microscopy’’ with 1000 Å resolution , 1987 .

[5]  Nazanin Bassiri-Gharb,et al.  Spatially Resolved Probing of Electrochemical Reactions via Energy Discovery Platforms. , 2015, Nano letters.

[6]  Stephen Jesse,et al.  Local thermomechanical characterization of phase transitions using band excitation atomic force acoustic microscopy with heated probe , 2008 .

[7]  Chris Allan,et al.  OME Remote Objects (OMERO): a flexible, model-driven data management system for experimental biology , 2012, Nature Methods.

[8]  Sergei V. Kalinin,et al.  Big data and deep data in scanning and electron microscopies: deriving functionality from multidimensional data sets , 2015, Advanced Structural and Chemical Imaging.

[9]  Grady S. White,et al.  The Importance of Distributed Loading and Cantilever Angle in Piezo-Force Microscopy , 2004 .

[10]  Stephen Jesse,et al.  Mapping internal structure of coal by confocal micro-Raman spectroscopy and scanning microwave microscopy , 2014 .

[11]  H. Gaub,et al.  Force spectroscopy with single bio-molecules. , 2000, Current opinion in chemical biology.

[12]  Amit Kumar,et al.  Measuring oxygen reduction/evolution reactions on the nanoscale. , 2011, Nature chemistry.

[13]  P. Girard,et al.  ELECTROSTATIC FORCES ACTING ON THE TIP IN ATOMIC FORCE MICROSCOPY : MODELIZATION AND COMPARISON WITH ANALYTIC EXPRESSIONS , 1997 .

[14]  Sergei V. Kalinin,et al.  Scanning Probe Microscopy of Functional Materials , 2011 .

[15]  Sergei V. Kalinin,et al.  Magnetic-field measurements of current-carrying devices by force-sensitive magnetic-force microscopy with potential correction , 2001 .

[16]  Roger Proksch,et al.  Energy dissipation measurements in frequency-modulated scanning probe microscopy , 2010, Nanotechnology.

[17]  Stephen Jesse,et al.  Direct Probing of Charge Injection and Polarization‐Controlled Ionic Mobility on Ferroelectric LiNbO3 Surfaces , 2014, Advanced materials.

[18]  Clive A. Randall,et al.  Domain pinning near a single-grain boundary in tetragonal and rhombohedral lead zirconate titanate films , 2015 .

[19]  O. E. Bronson Messer,et al.  Near Real-time Data Analysis of Core-collapse Supernova Simulations with Bellerophon , 2014, ICCS.

[20]  Gabriel Gomila,et al.  Quantifying the dielectric constant of thick insulators using electrostatic force microscopy , 2010 .

[21]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[22]  N. Bonnet,et al.  Multivariate statistical methods for the analysis of microscope image series: applications in materials science , 1998 .

[23]  Stephen Jesse,et al.  Local measurements of Preisach density in polycrystalline ferroelectric capacitors using piezorespon , 2010 .

[24]  Sergei V. Kalinin,et al.  Scanning impedance microscopy of electroactive interfaces , 2001 .

[25]  Stephen Jesse,et al.  Principal component and spatial correlation analysis of spectroscopic-imaging data in scanning probe microscopy , 2009, Nanotechnology.

[26]  Masayuki Abe,et al.  Chemical identification of individual surface atoms by atomic force microscopy , 2007, Nature.

[27]  Stephen Jesse,et al.  The band excitation method in scanning probe microscopy for rapid mapping of energy dissipation on the nanoscale , 2007, 0708.4248.

[28]  Nicolas Dobigeon,et al.  Spectral mixture analysis of EELS spectrum-images. , 2012, Ultramicroscopy.

[29]  Vittorio Foglietti,et al.  Effect of doping on surface reactivity and conduction mechanism in samarium-doped ceria thin films. , 2014, ACS nano.

[30]  S Jesse,et al.  Spatially resolved spectroscopic mapping of polarization reversal in polycrystalline ferroelectric films: crossing the resolution barrier. , 2009, Physical review letters.

[31]  Stephen Jesse,et al.  Morphology Mapping of Phase-Separated Polymer Films Using Nanothermal Analysis , 2010 .

[32]  Shaomin Xiong,et al.  Unraveling the Mechanism of Nanoscale Mechanical Reinforcement in Glassy Polymer Nanocomposites. , 2016, Nano letters.

[33]  Ricardo Garcia,et al.  Formation of nanoscale liquid menisci in electric fields , 2006 .

[34]  Niklas Peinecke,et al.  Laplace-Beltrami spectra as 'Shape-DNA' of surfaces and solids , 2006, Comput. Aided Des..

[35]  Amit Kumar,et al.  Variable temperature electrochemical strain microscopy of Sm-doped ceria , 2013, Nanotechnology.

[36]  S Jesse,et al.  Disorder identification in hysteresis data: recognition analysis of the random-bond-random-field Ising model. , 2009, Physical review letters.

[37]  Sergei V. Kalinin,et al.  Direct evidence of mesoscopic dynamic heterogeneities at the surfaces of ergodic ferroelectric relaxors , 2022 .

[38]  Emmanuel J. Candès,et al.  A Probabilistic and RIPless Theory of Compressed Sensing , 2010, IEEE Transactions on Information Theory.

[39]  Stephen Jesse,et al.  Switching spectroscopy piezoresponse force microscopy of ferroelectric materials , 2006 .

[40]  Amit Kumar,et al.  Nanoscale control of phase variants in strain-engineered BiFeO₃. , 2011, Nano letters.

[41]  Amit Kumar,et al.  Mapping irreversible electrochemical processes on the nanoscale: ionic phenomena in li ion conductive glass ceramics. , 2011, Nano letters.

[42]  Jean-Yves Tourneret,et al.  Bayesian Fusion of Multi-Band Images , 2013, IEEE Journal of Selected Topics in Signal Processing.

[43]  Bryan D. Huey,et al.  Ferroelectric domain switching dynamics with combined 20 nm and 10 ns resolution , 2009, Journal of Materials Science.

[44]  Sergei V. Kalinin,et al.  Nanoimpedance Microscopy and Spectroscopy , 2002 .

[45]  Peter Grutter,et al.  Magnetic dissipation imaging (abstract) , 1997 .

[46]  Andreas Stemmer,et al.  Estimating the transfer function of the cantilever in atomic force microscopy: A system identification approach , 2005 .

[47]  Halil Kilicoglu,et al.  SemMedDB: a PubMed-scale repository of biomedical semantic predications , 2012, Bioinform..

[48]  Stephen Jesse,et al.  Multifrequency spectrum analysis using fully digital G Mode-Kelvin probe force microscopy , 2016, Nanotechnology.

[49]  Stephen Jesse,et al.  Open-loop band excitation Kelvin probe force microscopy , 2012, Nanotechnology.

[50]  Stephen Jesse,et al.  Spatially Resolved Mapping of Polarization Switching Behavior in Nanoscale Ferroelectrics , 2008 .

[51]  Peter Maksymovych,et al.  Defect-induced asymmetry of local hysteresis loops on BiFeO3 surfaces , 2009, Journal of Materials Science.

[52]  Robert W. Stark,et al.  Tapping-mode atomic force microscopy and phase-imaging in higher eigenmodes , 1999 .

[53]  Robert W. Stark,et al.  Spectroscopy of the anharmonic cantilever oscillations in tapping-mode atomic-force microscopy , 2000 .

[54]  Stephen Jesse,et al.  Temperature-dependent phase transitions in zeptoliter volumes of a complex biological membrane , 2011, Nanotechnology.

[55]  Sergei V. Kalinin,et al.  Band excitation in scanning probe microscopy: recognition and functional imaging. , 2014, Annual review of physical chemistry.

[56]  Manfred Radmacher,et al.  Atomic force microscope with magnetic force modulation , 1994 .

[57]  Chaomei Chen,et al.  A visual analytic study of retracted articles in scientific literature , 2013, J. Assoc. Inf. Sci. Technol..

[58]  Y. Dufrêne,et al.  Detection and localization of single molecular recognition events using atomic force microscopy , 2006, Nature Methods.

[59]  Roger Proksch,et al.  Quantitative measurements of electromechanical response with a combined optical beam and interferometric atomic force microscope , 2015 .

[60]  Stephen Jesse,et al.  Complete information acquisition in dynamic force microscopy , 2015, Nature Communications.

[61]  Amit Kumar,et al.  Mapping piezoelectric nonlinearity in the Rayleigh regime using band excitation piezoresponse force microscopy , 2011 .

[62]  Abhishek Bhattacharyya,et al.  Unraveling Deterministic Mesoscopic Polarization Switching Mechanisms: Spatially Resolved Studies of a Tilt Grain Boundary in Bismuth Ferrite , 2009 .

[63]  Sergei V. Kalinin,et al.  Open loop Kelvin probe force microscopy with single and multi-frequency excitation , 2013, Nanotechnology.

[64]  Stephen Jesse,et al.  G-mode magnetic force microscopy: Separating magnetic and electrostatic interactions using big data analytics , 2016 .

[65]  Sergei V. Kalinin,et al.  Probing the role of single defects on the thermodynamics of electric-field induced phase transitions. , 2008, Physical review letters.

[66]  Matthias Rief,et al.  Single Molecule Force Spectroscopy on Polysaccharides by Atomic Force Microscopy , 1997, Science.

[67]  Gerold A. Schneider,et al.  High-resolution characterization of piezoelectric ceramics by ultrasonic scanning force microscopy techniques , 2002 .

[68]  Anna N. Morozovska,et al.  Resolution-function theory in piezoresponse force microscopy : Wall imaging, spectroscopy, and lateral resolution , 2007 .

[69]  Stephen Jesse,et al.  Resonance enhancement in piezoresponse force microscopy: Mapping electromechanical activity, contact stiffness, and Q factor , 2006 .

[70]  Anthony B. Kos,et al.  Nanomechanical mapping with resonance tracking scanned probe microscope , 2007 .

[71]  R. M. Westervelt,et al.  Coherent branched flow in a two-dimensional electron gas , 2000, Nature.

[72]  Sumio Hosaka,et al.  Simultaneous Observation of 3-Dimensional Magnetic Stray Field and Surface Structure Using New Force Microscope , 1992 .

[73]  Jean-Yves Tourneret,et al.  Hyperspectral and Multispectral Image Fusion Based on a Sparse Representation , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[74]  Sergei V. Kalinin,et al.  Nanoscale mapping of ion diffusion in a lithium-ion battery cathode. , 2010, Nature nanotechnology.

[75]  Rangaraj M. Rangayyan,et al.  Statistical measures of orientation of texture for the detection of architectural distortion in prior mammograms of interval-cancer , 2012, J. Electronic Imaging.

[76]  L. Carin,et al.  The potential for Bayesian compressive sensing to significantly reduce electron dose in high-resolution STEM images. , 2014, Microscopy.

[77]  Heller,et al.  Imaging coherent electron flow from a quantum point contact , 2000, Science.

[78]  Ricardo Garcia,et al.  Dynamic atomic force microscopy methods , 2002 .

[79]  Amit Kumar,et al.  Toward quantitative electrochemical measurements on the nanoscale by scanning probe microscopy: environmental and current spreading effects. , 2013, ACS nano.

[80]  Rong Xu,et al.  Large-scale extraction of accurate drug-disease treatment pairs from biomedical literature for drug repurposing , 2013, BMC Bioinformatics.

[81]  Igor Levin,et al.  Piezoelectric response of nanoscale PbTiO3 in composite PbTiO3-CoFe2O4 epitaxial films , 2008 .

[82]  Anna N. Morozovska,et al.  Real space mapping of polarization dynamics and hysteresis loop formation in relaxor-ferroelectric PbMg1/3Nb2/3O3–PbTiO3 solid solutions , 2010 .

[83]  J. Villarrubia Algorithms for Scanned Probe Microscope Image Simulation, Surface Reconstruction, and Tip Estimation , 1997, Journal of research of the National Institute of Standards and Technology.

[84]  Charles Sneiderman,et al.  Extending SemRep to the public health domain , 2013, J. Assoc. Inf. Sci. Technol..

[85]  Sergei V. Kalinin,et al.  Ferroelectric domain wall pinning at a bicrystal grain boundary in bismuth ferrite , 2008 .

[86]  O. Vatel,et al.  Kelvin probe force microscopy for characterization of semiconductor devices and processes , 1996 .

[87]  Murti V. Salapaka,et al.  Thermally driven non-contact atomic force microscopy , 2005 .

[88]  Amit Kumar,et al.  Spatially Resolved Mapping of Disorder Type and Distribution in Random Systems using Artificial Neural Network Recognition , 2011 .

[89]  Peter Grutter,et al.  Magnetic dissipation force microscopy , 1997 .

[90]  Chang-Beom Eom,et al.  Differentiating Ferroelectric and Nonferroelectric Electromechanical Effects with Scanning Probe Microscopy. , 2015, ACS nano.

[91]  Stephen Jesse,et al.  Band excitation in scanning probe microscopy: sines of change , 2011 .

[92]  Stephen Jesse,et al.  Full information acquisition in piezoresponse force microscopy , 2015 .

[93]  Sergei V Kalinin,et al.  Constraining Data Mining with Physical Models: Voltage- and Oxygen Pressure-Dependent Transport in Multiferroic Nanostructures. , 2015, Nano letters.

[94]  Matjaz Perc,et al.  Inheritance patterns in citation networks reveal scientific memes , 2014, ArXiv.

[95]  S Jesse,et al.  Adaptive probe trajectory scanning probe microscopy for multiresolution measurements of interface geometry. , 2009, Nanotechnology.

[96]  Anna N. Morozovska,et al.  Probing Local and Global Ferroelectric Phase Stability and Polarization Switching in Ordered Macroporous PZT , 2011 .

[97]  Roger Proksch,et al.  Multifrequency, repulsive-mode amplitude-modulated atomic force microscopy , 2006 .

[98]  Amit Kumar,et al.  Dynamic piezoresponse force microscopy: Spatially resolved probing of polarization dynamics in time and voltage domains , 2012 .

[99]  Stephen Jesse,et al.  Mapping bias-induced phase stability and random fields in relaxor ferroelectrics , 2009 .

[100]  L. Landweber An iteration formula for Fredholm integral equations of the first kind , 1951 .

[101]  Stephen Jesse,et al.  Switching spectroscopy piezoresponse force microscopy of polycrystalline capacitor structures , 2009 .

[102]  Daniel Platz,et al.  Reconstructing nonlinearities with intermodulation spectroscopy. , 2009, Physical review letters.

[103]  Stephen Jesse,et al.  Correlative Multimodal Probing of Ionically-Mediated Electromechanical Phenomena in Simple Oxides , 2013, Scientific Reports.

[104]  Stephen Jesse,et al.  Spatially resolved probing of Preisach density in polycrystalline ferroelectric thin films , 2010 .

[105]  Tom Goldstein,et al.  The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..

[106]  Sergei V. Kalinin,et al.  Collective dynamics underpins Rayleigh behavior in disordered polycrystalline ferroelectrics , 2010, Proceedings of the National Academy of Sciences.

[107]  P. Hansma,et al.  Using force modulation to image surface elasticities with the atomic force microscope , 1991 .

[108]  Ricardo Garcia,et al.  The emergence of multifrequency force microscopy. , 2012, Nature nanotechnology.

[109]  Stephen Jesse,et al.  Deep data analysis of conductive phenomena on complex oxide interfaces: physics from data mining. , 2014, ACS nano.

[110]  Ricardo Garcia,et al.  Compositional mapping of surfaces in atomic force microscopy by excitation of the second normal mode of the microcantilever , 2004 .

[111]  S. Kalinin,et al.  Dual-frequency resonance-tracking atomic force microscopy , 2007 .

[112]  H. Lang,et al.  How the doors to the nanoworld were opened , 2006, Nature nanotechnology.

[113]  Amit Kumar,et al.  Real-space mapping of dynamic phenomena during hysteresis loop measurements: Dynamic switching spectroscopy piezoresponse force microscopy , 2011 .

[114]  Brian C. Sales,et al.  Research Update: Spatially resolved mapping of electronic structure on atomic level by multivariate statistical analysis , 2014 .

[115]  Camilo Mora,et al.  Mora et al. reply , 2014, Nature.

[116]  Calvin F. Quate,et al.  Microfabrication of cantilever styli for the atomic force microscope , 1990 .

[117]  Anna N. Morozovska,et al.  Spatially resolved mapping of ferroelectric switching behavior in self-assembled multiferroic nanostructures: strain, size, and interface effects , 2007 .

[118]  Stephen Jesse,et al.  Space- and time-resolved mapping of ionic dynamic and electroresistive phenomena in lateral devices. , 2013, ACS nano.

[119]  Harry Heinzelmann,et al.  Atomic force microscopy for the study of tribology and adhesion , 1989 .

[120]  Vittorio Foglietti,et al.  Effect of Water Adsorption on Conductivity in Epitaxial Sm0.1Ce0.9O2-δ Thin Film for Micro Solid Oxide Fuel Cells Applications , 2015 .

[121]  Jean-Yves Tourneret,et al.  Nonlinear Spectral Unmixing of Hyperspectral Images Using Gaussian Processes , 2012, IEEE Transactions on Signal Processing.

[122]  Eirik Endeve,et al.  BEAM: A Computational Workflow System for Managing and Modeling Material Characterization Data in HPC Environments , 2016, ICCS.

[123]  L. Carin,et al.  Applying compressive sensing to TEM video: a substantial frame rate increase on any camera , 2015, Advanced Structural and Chemical Imaging.

[124]  D. Lohr,et al.  Single-molecule recognition imaging microscopy. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[125]  Erik T. Mueller,et al.  Watson: Beyond Jeopardy! , 2013, Artif. Intell..

[126]  Sergei V. Kalinin,et al.  Double-layer mediated electromechanical response of amyloid fibrils in liquid environment. , 2010, ACS nano.

[127]  Sergei V. Kalinin,et al.  Probing the temperature dependence of the mechanical properties of polymers at the nanoscale with band excitation thermal scanning probe microscopy , 2009, Nanotechnology.

[128]  Sergei V. Kalinin,et al.  Piezoresponse Force Microscopy: A Window into Electromechanical Behavior at the Nanoscale , 2009 .

[129]  Ute Rabe,et al.  Acoustic microscopy by atomic force microscopy , 1994 .

[130]  Sang Soo Lee,et al.  X-ray–driven reaction front dynamics at calcite-water interfaces , 2015, Science.

[131]  Stephen Jesse,et al.  Identification of phases, symmetries and defects through local crystallography , 2015, Nature Communications.

[132]  Claus Daniel,et al.  Direct Mapping of Ion Diffusion Times on LiCoO2 Surfaces with Nanometer Resolution , 2011 .

[133]  Amit Kumar,et al.  Nonlinear phenomena in multiferroic nanocapacitors: joule heating and electromechanical effects. , 2011, ACS nano.

[134]  Peter Sutter,et al.  Visualization of charge transport through Landau levels in graphene , 2010 .

[135]  Stephen Jesse,et al.  Co-registered Topographical, Band Excitation Nanomechanical, and Mass Spectral Imaging Using a Combined Atomic Force Microscopy/Mass Spectrometry Platform. , 2015, ACS nano.

[136]  T. Murdoch,et al.  The inevitable application of big data to health care. , 2013, JAMA.

[137]  Robert W. Stark,et al.  Determination of shear stiffness based on thermal noise analysis in atomic-force microscopy: Passive overtone microscopy , 2001 .

[138]  Amit P. Sheth,et al.  A graph-based recovery and decomposition of Swanson's hypothesis using semantic predications , 2013, J. Biomed. Informatics.

[139]  Sergei V. Kalinin,et al.  Big-deep-smart data in imaging for guiding materials design. , 2015, Nature materials.

[140]  Chaomei Chen,et al.  Tracing knowledge diffusion , 2004, Scientometrics.

[141]  Roger Proksch,et al.  A detection technique for scanning force microscopy , 1993 .

[142]  Stephen Jesse,et al.  Collective dynamics in nanostructured polycrystalline ferroelectric thin films using local time-resolved measurements and switching spectroscopy , 2010 .

[143]  Othmar Marti,et al.  Concurrent measurement of adhesive and elastic surface properties with a new modulation technique for scanning force microscopy , 2000 .

[144]  Steven A Greenberg,et al.  How citation distortions create unfounded authority: analysis of a citation network , 2009, BMJ : British Medical Journal.

[145]  D. Rugar,et al.  Frequency modulation detection using high‐Q cantilevers for enhanced force microscope sensitivity , 1991 .

[146]  G. Gomila,et al.  Quantitative dielectric constant measurement of thin films by DC electrostatic force microscopy , 2009, Nanotechnology.