Enriched finite element spaces for transient conduction heat transfer

This paper presents an alternative approach via finite elements to treat numerically the thermal shocks in heat transfer finite element analysis. The method consists in using the standard enriched finite element approaches with time-interpolation. It will be applied here to the transient conduction heat equation where the classical Galerkin method is shown to be unstable. The proposed method consists in adding and eliminating bubbles to the finite element space and then to interpolate the solution to the real time step. This modification is equivalent to the addition of a stabilizing term tuned by a local time-dependent stability parameter, which ensures an oscillating-free solution. To validate this approach, the numerical results obtained in classical 2D and 3D benchmark problems are compared with the Galerkin and the analytical solutions.

[1]  L. Franca,et al.  The Galerkin gradient least-squares method , 1989 .

[2]  Franco Brezzi,et al.  Virtual bubbles and Galerkin-least-squares type methods (Ga.L.S.) , 1993 .

[3]  Thierry Coupez,et al.  Parallel meshing and remeshing , 2000 .

[4]  Siegfried Selberherr,et al.  On the interplay between meshing and discretization inthree-dimensional diffusion simulation , 2000, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[5]  Isaac Harari,et al.  Stability of semidiscrete formulations for parabolic problems at small time steps , 2004 .

[6]  On the limitations of bubble functions , 1994 .

[7]  Elie Hachem,et al.  Stabilized finite element method for heat transfer and turbulent flows inside industrial furnaces , 2009 .

[8]  R. Codina,et al.  Time dependent subscales in the stabilized finite element approximation of incompressible flow problems , 2007 .

[9]  C. Farhat,et al.  Bubble Functions Prompt Unusual Stabilized Finite Element Methods , 1994 .

[10]  R. Taylor The Finite Element Method, the Basis , 2000 .

[11]  T. Sheu,et al.  A multi‐dimensional monotonic finite element model for solving the convection–diffusion‐reaction equation , 2002 .

[12]  Mario Putti,et al.  Finite Element Approximation of the Diffusion Operator on Tetrahedra , 1998, SIAM J. Sci. Comput..

[13]  Giancarlo Sangalli,et al.  Coupling stabilized finite element methods with finite difference time integration for advection–diffusion–reaction problems , 2007 .

[14]  C. Gruau,et al.  3D tetrahedral, unstructured and anisotropic mesh generation with adaptation to natural and multidomain metric , 2005 .

[15]  Thomas J. R. Hughes,et al.  What are C and h ?: inequalities for the analysis and design of finite element methods , 1992 .

[16]  Charbel Farhat,et al.  Residual-Free Bubbles for the Helmholtz Equation , 1996 .

[17]  F. Brezzi,et al.  A relationship between stabilized finite element methods and the Galerkin method with bubble functions , 1992 .

[18]  Frédéric Valentin,et al.  Multiscale and Residual-Free Bubble Functions for Reaction-Advection-Diffusion Problems , 2005 .

[19]  Jean-Francois Hetu,et al.  Galerkin gradient least-squares formulations for transient conduction heat transfer , 2002 .

[20]  M. Bellet,et al.  Linear tetrahedral finite elements for thermal shock problems , 2006 .

[21]  Bruno Vergnes,et al.  La mise en forme des matières plastiques , 1996 .

[22]  T. Coupez,et al.  A Taylor discontinuous Galerkin method for the thermal solution in 3D mold filling , 1999 .