Weak π-rings
暂无分享,去创建一个
[1] C. Jayaram. Some Characterizations of Dedekind Rings , 2012 .
[2] D. D. Anderson,et al. Idealization of a Module , 2009 .
[3] C. Jayaram. Regular elements in multiplicative lattices , 2008 .
[4] C. Jayaram. Almost π-Lattices , 2004 .
[5] C. Jayaram. ALMOST Q-RINGS , 2004 .
[6] Floris Ernst,et al. Multiplicative Ideal Theory , 2004 .
[7] C. Jayaram. 2-Join decomposition lattices , 2001 .
[8] D. D. Anderson,et al. Dilworth's principal elements , 1996 .
[9] D. D. Anderson,et al. Principal element lattices , 1996 .
[10] F. Pobell,et al. A study of vibrating wires for viscometry in high magnetic fields , 1996 .
[11] B. Kang. On the converse of a well-known fact about Krull domains , 1989 .
[12] D. D. Anderson,et al. On primary factorizations , 1988 .
[13] J. Huckaba. Commutative Rings with Zero Divisors , 1988 .
[14] D. D. Anderson,et al. Commutative rings in which every ideal is a product of primary ideals , 1987 .
[15] D. D. Anderson,et al. Characterizing prüfer rings via their regular ideals , 1987 .
[16] W. Heinzer,et al. The Laskerian property in commutative rings , 1981 .
[17] D. D. Anderson. π-domains, overrings, and divisorial ideals , 1978, Glasgow Mathematical Journal.
[18] Max D. Larsen,et al. Multiplicative theory of ideals , 1973 .
[19] M. W. Evans. On commutative P. P. rings , 1972 .
[20] P. McCarthy. Principal elements of lattices of ideals , 1971 .
[21] J. L. Mott. Multiplication rings containing only finitely many minimal prime ideals , 1969 .