Optimal time advancing dispersion relation preserving schemes

In this paper we examine the constrained optimization of explicit Runge-Kutta (RK) schemes coupled with central spatial discretization schemes to solve the one-dimensional convection equation. The constraints are defined with respect to the correct error propagation equation which goes beyond the traditional von Neumann analysis developed in Sengupta et al. [T.K. Sengupta, A. Dipankar, P. Sagaut, Error dynamics: beyond von Neumann analysis, J. Comput. Phys. 226 (2007) 1211-1218]. The efficiency of these optimal schemes is demonstrated for the one-dimensional convection problem and also by solving the Navier-Stokes equations for a two-dimensional lid-driven cavity (LDC) problem. For the LDC problem, results for Re=1000 are compared with results using spectral methods in Botella and Peyret [O. Botella, R. Peyret, Benchmark spectral results on the lid-driven cavity flow, Comput. Fluids 27 (1998) 421-433] to calibrate the method in solving the steady state problem. We also report the results of the same flow at Re=10,000 and compare them with some recent results to establish the correctness and accuracy of the scheme for solving unsteady flow problems. Finally, we also compare our results for a wave-packet propagation problem with another method developed for computational aeroacoustics.

[1]  C. Tam,et al.  Dispersion-relation-preserving finite difference schemes for computational acoustics , 1993 .

[2]  J. Bowles,et al.  Fourier Analysis of Numerical Approximations of Hyperbolic Equations , 1987 .

[3]  R. F. Warming,et al.  The modified equation approach to the stability and accuracy analysis of finite-difference methods , 1974 .

[4]  Tapan K. Sengupta,et al.  Further improvement and analysis of CCD scheme: Dissipation discretization and de-aliasing properties , 2009, J. Comput. Phys..

[5]  Tapan K. Sengupta,et al.  High Accuracy Compact Schemes and Gibbs' Phenomenon , 2004, J. Sci. Comput..

[6]  Tapan K. Sengupta,et al.  A new combined stable and dispersion relation preserving compact scheme for non-periodic problems , 2009, J. Comput. Phys..

[7]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[8]  A. Ralston A first course in numerical analysis , 1965 .

[9]  S. Lele Compact finite difference schemes with spectral-like resolution , 1992 .

[10]  Jay C. Hardin,et al.  ICASE/LaRC Workshop on Benchmark Problems in Computational Aeroacoustics (CAA) , 1995 .

[11]  J. Neumann,et al.  Numerical Integration of the Barotropic Vorticity Equation , 1950 .

[12]  Shlomo Ta'asan,et al.  Finite difference schemes for long-time integration , 1994 .

[13]  Ch. Hirsch,et al.  Fundamentals Of Computational Fluid Dynamics , 2016 .

[14]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[15]  Matteo Bernardini,et al.  A general strategy for the optimization of Runge-Kutta schemes for wave propagation phenomena , 2009, J. Comput. Phys..

[16]  O. Botella,et al.  BENCHMARK SPECTRAL RESULTS ON THE LID-DRIVEN CAVITY FLOW , 1998 .

[17]  P. Roache Fundamentals of computational fluid dynamics , 1998 .

[18]  J. Crank,et al.  A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type , 1947, Mathematical Proceedings of the Cambridge Philosophical Society.

[19]  Tapan K. Sengupta,et al.  A Comparative Study of Time Advancement Methods for Solving Navier–Stokes Equations , 2004, J. Sci. Comput..

[20]  C. Bruneau,et al.  The 2D lid-driven cavity problem revisited , 2006 .

[21]  C. Bogey,et al.  A family of low dispersive and low dissipative explicit schemes for flow and noise computations , 2004 .

[22]  Chris Lacor,et al.  Optimization of time integration schemes coupled to spatial discretization for use in CAA applications , 2006, J. Comput. Phys..

[23]  J. Butcher The numerical analysis of ordinary differential equations: Runge-Kutta and general linear methods , 1987 .

[24]  U. Ghia,et al.  High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method , 1982 .

[25]  Tapan K. Sengupta,et al.  High Accuracy Schemes for DNS and Acoustics , 2006, J. Sci. Comput..

[26]  Yu. I. Shokin,et al.  The Method of Differential Approximation , 1983 .

[27]  M.Y. Hussaini,et al.  Low-Dissipation and Low-Dispersion Runge-Kutta Schemes for Computational Acoustics , 1994 .

[29]  Tapan K. Sengupta,et al.  Symmetrized compact scheme for receptivity study of 2D transitional channel flow , 2006, J. Comput. Phys..

[30]  Sergio Pirozzoli,et al.  Performance analysis and optimization of finite-difference schemes for wave propagation problems , 2007, J. Comput. Phys..

[31]  T. K. Sengupta,et al.  Error dynamics: Beyond von Neumann analysis , 2007, J. Comput. Phys..

[32]  Tapan K. Sengupta,et al.  Analysis of central and upwind compact schemes , 2003 .

[33]  L. Trefethen Group velocity in finite difference schemes , 1981 .

[34]  Manuel Calvo,et al.  Short note: a new minimum storage Runge-Kutta scheme for computational acoustics , 2004 .

[35]  W. Habashi,et al.  2N-Storage Low Dissipation and Dispersion Runge-Kutta Schemes for Computational Acoustics , 1998 .