Optimal time advancing dispersion relation preserving schemes
暂无分享,去创建一个
[1] C. Tam,et al. Dispersion-relation-preserving finite difference schemes for computational acoustics , 1993 .
[2] J. Bowles,et al. Fourier Analysis of Numerical Approximations of Hyperbolic Equations , 1987 .
[3] R. F. Warming,et al. The modified equation approach to the stability and accuracy analysis of finite-difference methods , 1974 .
[4] Tapan K. Sengupta,et al. Further improvement and analysis of CCD scheme: Dissipation discretization and de-aliasing properties , 2009, J. Comput. Phys..
[5] Tapan K. Sengupta,et al. High Accuracy Compact Schemes and Gibbs' Phenomenon , 2004, J. Sci. Comput..
[6] Tapan K. Sengupta,et al. A new combined stable and dispersion relation preserving compact scheme for non-periodic problems , 2009, J. Comput. Phys..
[7] Henk A. van der Vorst,et al. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..
[8] A. Ralston. A first course in numerical analysis , 1965 .
[9] S. Lele. Compact finite difference schemes with spectral-like resolution , 1992 .
[10] Jay C. Hardin,et al. ICASE/LaRC Workshop on Benchmark Problems in Computational Aeroacoustics (CAA) , 1995 .
[11] J. Neumann,et al. Numerical Integration of the Barotropic Vorticity Equation , 1950 .
[12] Shlomo Ta'asan,et al. Finite difference schemes for long-time integration , 1994 .
[13] Ch. Hirsch,et al. Fundamentals Of Computational Fluid Dynamics , 2016 .
[14] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[15] Matteo Bernardini,et al. A general strategy for the optimization of Runge-Kutta schemes for wave propagation phenomena , 2009, J. Comput. Phys..
[16] O. Botella,et al. BENCHMARK SPECTRAL RESULTS ON THE LID-DRIVEN CAVITY FLOW , 1998 .
[17] P. Roache. Fundamentals of computational fluid dynamics , 1998 .
[18] J. Crank,et al. A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type , 1947, Mathematical Proceedings of the Cambridge Philosophical Society.
[19] Tapan K. Sengupta,et al. A Comparative Study of Time Advancement Methods for Solving Navier–Stokes Equations , 2004, J. Sci. Comput..
[20] C. Bruneau,et al. The 2D lid-driven cavity problem revisited , 2006 .
[21] C. Bogey,et al. A family of low dispersive and low dissipative explicit schemes for flow and noise computations , 2004 .
[22] Chris Lacor,et al. Optimization of time integration schemes coupled to spatial discretization for use in CAA applications , 2006, J. Comput. Phys..
[23] J. Butcher. The numerical analysis of ordinary differential equations: Runge-Kutta and general linear methods , 1987 .
[24] U. Ghia,et al. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method , 1982 .
[25] Tapan K. Sengupta,et al. High Accuracy Schemes for DNS and Acoustics , 2006, J. Sci. Comput..
[26] Yu. I. Shokin,et al. The Method of Differential Approximation , 1983 .
[27] M.Y. Hussaini,et al. Low-Dissipation and Low-Dispersion Runge-Kutta Schemes for Computational Acoustics , 1994 .
[29] Tapan K. Sengupta,et al. Symmetrized compact scheme for receptivity study of 2D transitional channel flow , 2006, J. Comput. Phys..
[30] Sergio Pirozzoli,et al. Performance analysis and optimization of finite-difference schemes for wave propagation problems , 2007, J. Comput. Phys..
[31] T. K. Sengupta,et al. Error dynamics: Beyond von Neumann analysis , 2007, J. Comput. Phys..
[32] Tapan K. Sengupta,et al. Analysis of central and upwind compact schemes , 2003 .
[33] L. Trefethen. Group velocity in finite difference schemes , 1981 .
[34] Manuel Calvo,et al. Short note: a new minimum storage Runge-Kutta scheme for computational acoustics , 2004 .
[35] W. Habashi,et al. 2N-Storage Low Dissipation and Dispersion Runge-Kutta Schemes for Computational Acoustics , 1998 .