High-dimensional spatial entanglement observed with an electron multiplying CCD camera

Using an electron multiplying CCD camera we observe both image plane (position) and far field (momentum) correlations between photon pairs produced from spontaneous parametric down-conversion when using a 201 x 201 bi-dimensional array of pixels and a flux of around 0.02 photons/pixel. After background subtraction we characterize the strength of signal and idler correlations in both transverse dimensions by applying entanglement and EPR criteria, showing good agreement with the theoretical predictions. The application of such devices in quantum optics could have a wide range, including quantum computation with spatial degrees of freedom of single photons.

[1]  James Schneeloch,et al.  Quantum mutual information capacity for high-dimensional entangled states. , 2011, Physical review letters.

[2]  S. P. Walborn,et al.  Propagation of transverse intensity correlations of a two-photon state , 2009, 0902.1660.

[3]  Stefano Mancini,et al.  Entangling macroscopic oscillators exploiting radiation pressure. , 2002, Physical review letters.

[4]  P. H. Souto Ribeiro,et al.  Detection of transverse entanglement in phase space , 2008, 0806.3044.

[5]  S. Walborn,et al.  Revealing hidden Einstein-Podolsky-Rosen nonlocality. , 2011, Physical review letters.

[6]  S. Walborn,et al.  Schemes for quantum key distribution with higher-order alphabets using single-photon fractional Fourier optics , 2008 .

[7]  G. Brida,et al.  Experimental realization of sub-shot-noise quantum imaging , 2010 .

[8]  F. Devaux,et al.  Purely spatial coincidences of twin photons in parametric spontaneous down-conversion , 2010 .

[9]  S. Walborn,et al.  Quantum teleportation of the angular spectrum of a single-photon field , 2007 .

[10]  C. Monken,et al.  Direct measurement of transverse-mode entanglement in two-photon states , 2009 .

[11]  S. Walborn,et al.  Spatial correlations in parametric down-conversion , 2010, 1010.1236.

[12]  J H Eberly,et al.  Analysis and interpretation of high transverse entanglement in optical parametric down conversion. , 2004, Physical review letters.

[13]  S P Walborn,et al.  Quantum key distribution with higher-order alphabets using spatially encoded qudits. , 2006, Physical review letters.

[14]  S. Walborn,et al.  Quantum entanglement beyond Gaussian criteria , 2009, Proceedings of the National Academy of Sciences.

[15]  John C Howell,et al.  Realization of the Einstein-Podolsky-Rosen paradox using momentum- and position-entangled photons from spontaneous parametric down conversion. , 2004, Physical review letters.

[16]  Carlos H. Monken,et al.  Transfer of angular spectrum and image formation in spontaneous parametric down-conversion , 1998 .

[17]  Eric Lantz,et al.  Measurement of sub-shot-noise correlations of spatial fluctuations in the photon-counting regime. , 2008, Physical review letters.

[18]  Reid,et al.  Demonstration of the Einstein-Podolsky-Rosen paradox using nondegenerate parametric amplification. , 1989, Physical review. A, General physics.

[19]  W. P. Bowen,et al.  Colloquium: The Einstein-Podolsky-Rosen paradox: From concepts to applications , 2008, 0806.0270.

[20]  Eric Lantz,et al.  Multi-imaging and Bayesian estimation for photon counting with EMCCDs , 2008 .

[21]  G. Buller,et al.  Imaging high-dimensional spatial entanglement with a camera , 2012, Nature Communications.

[22]  Robert W. Boyd,et al.  Quantum Correlations in Optical Angle–Orbital Angular Momentum Variables , 2010, Science.

[23]  S. Barnett,et al.  Quantum correlations in position, momentum, and intermediate bases for a full optical field of view , 2012 .

[24]  M Ritsch-Marte,et al.  Violation of a Bell inequality in two-dimensional orbital angular momentum state-spaces. , 2009, Optics express.

[25]  J. P. Woerdman,et al.  Two-dimensional wave-vector correlations in spontaneous parametric downconversion explored with an intensified CCD camera , 2002 .

[26]  P Di Trapani,et al.  Detection of sub-shot-noise spatial correlation in high-gain parametric down conversion. , 2004, Physical review letters.

[27]  P. H. Souto Ribeiro,et al.  Continuous-variable quantum computation with spatial degrees of freedom of photons , 2011, 1106.3049.

[28]  Yanhua Shih,et al.  Identifying entanglement using quantum "ghost" interference and imaging , 2004, InternationalQuantum Electronics Conference, 2004. (IQEC)..

[29]  Cirac,et al.  Inseparability criterion for continuous variable systems , 1999, Physical review letters.

[30]  Ian A. Walmsley,et al.  A characterization of the single-photon sensitivity of an electron multiplying charge-coupled device , 2009 .

[31]  Adetunmise C. Dada,et al.  Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities , 2011, 1104.5087.

[32]  M. P. Almeida,et al.  Experimental investigation of quantum key distribution with position and momentum of photon pairs , 2004, quant-ph/0411183.

[33]  F. Devaux,et al.  Realization of the purely spatial Einstein-Podolsky-Rosen paradox in full-field images of spontaneous parametric down conversion , 2012, 1204.0990.