Evolution of London penetration depth with scattering in single crystals of K1-xNaxFe2As2

London penetration depth, λ(T), was measured in single crystals of K1-xNaxFe2As2, x=0 and 0.07, down to temperatures of 50 mK, ~Tc/50. Isovalent substitution of Na for K significantly increases impurity scattering, with ρ(Tc) rising from 0.2 to 2.2 μΩ cm, and leads to a suppression of Tc from 3.5 to 2.8 K. At the same time, a close to T-linear Δλ(T) in pure samples changes to almost T2 in the substituted samples. The behavior never becomes exponential as expected for the accidental nodes, as opposed to T2 dependence in superconductors with symmetry imposed line nodes. The superfluid density in the full temperature range follows a simple clean and dirty d-wave dependence, for pure and substituted samples, respectively. This result contradicts suggestions of multiband scenarios with strongly different gap structure on four sheets of the Fermi surface.

[1]  T. Lograsso,et al.  Comprehensive scenario for single-crystal growth and doping dependence of resistivity and anisotropic upper critical fields in (Ba1-xKx)Fe2As2 (0.22 <= X <= 1) , 2014, 1403.0227.

[2]  S. Y. Li,et al.  Anomalous impurity effects in the iron-based superconductor KFe2As2 , 2012, 1206.2030.

[3]  M. Tanatar,et al.  Dome – like variation of the superconducting gap anisotropy in Fe-based superconductors , 2013 .

[4]  A. Millis,et al.  Nematicity as a probe of superconducting pairing in iron-based superconductors. , 2013, Physical review letters.

[5]  R. Prozorov,et al.  Rutgers relation for the analysis of superfluid density in superconductors , 2013, 1305.6630.

[6]  V. Kogan Homes scaling and BCS , 2013, 1305.3487.

[7]  L. Taillefer,et al.  Sudden reversal in the pressure dependence of Tc in the iron-based superconductor KFe2As2 , 2013, Nature Physics.

[8]  W. Kwok,et al.  Effect of heavy-ion irradiation on superconductivity in Ba 0.6 K 0.4 Fe 2 As 2 , 2013 .

[9]  T. Lograsso,et al.  Upper critical field of high-quality single crystals of KFe2As2 , 2013, 1304.2689.

[10]  G. Kotliar,et al.  Evidence of strong correlations and coherence-incoherence crossover in the iron pnictide superconductor KFe2As2. , 2013, Physical review letters.

[11]  J. Brink,et al.  Evidence of d-wave superconductivity in K1-xNaxFe2As2 (x=0,0.1) single crystals from low-temperature specific-heat measurements , 2013, 1301.5257.

[12]  J. van den Brink,et al.  Disordered magnetism in superconducting KFe2As2 single crystals , 2012, 1210.4590.

[13]  H. Eisaki,et al.  Flux-line lattice state in FeAs-based superconductor KFe2As2 , 2012 .

[14]  K. Hashimoto,et al.  Octet-Line Node Structure of Superconducting Order Parameter in KFe2As2 , 2012, Science.

[15]  G. Stewart,et al.  Specific-heat discontinuityΔCvs.Tcin annealed Ba(Fe1−xCox)2As2 , 2012, 1208.2492.

[16]  P. Dai,et al.  Doping-dependent anisotropic superconducting gap in Na1-δ(Fe1-xCox)As from London penetration depth , 2012 .

[17]  Ching Hua Lee,et al.  From d-wave to s-wave pairing in the iron-pnictide superconductor (Ba,K)Fe2As2 , 2012, Superconductor Science and Technology.

[18]  K. H. Kim,et al.  Specific heat toHc2: Evidence for nodes or deep minima in the superconducting gap of underdoped and overdoped Ba(Fe1−xCox)2As2 , 2012, 1206.5354.

[19]  K. Hashimoto,et al.  A Sharp Peak of the Zero-Temperature Penetration Depth at Optimal Composition in BaFe2(As1–xPx)2 , 2012, Science.

[20]  T. Das Pairing symmetries of several iron-based superconductor families and some similarities with cuprates and heavy-fermions , 2012 .

[21]  Ching Hua Lee,et al.  Universal heat conduction in the iron arsenide superconductor KFe2As2: evidence of a d-wave state. , 2012, Physical review letters.

[22]  M. Abdel-Hafiez,et al.  Specific heat and upper critical fields in KFe2As2 single crystals , 2011, 1110.6357.

[23]  R. Prozorov,et al.  Precision global measurements of London penetration depth in FeTe 0.58 Se 0.42 , 2011 .

[24]  A. Chubukov Pairing mechanism in Fe-based superconductors , 2011, 1110.0052.

[25]  E. M. Forgan,et al.  Gap in KFe 2 As 2 studied by small-angle neutron scattering observations of the magnetic vortex lattice , 2011 .

[26]  R. Prozorov,et al.  London penetration depth in iron-based superconductors , 2011, 1107.0675.

[27]  Yoo Jang Song,et al.  Nodeless two-gap superconducting state in single crystals of the stoichiometric iron pnictide LiFeAs , 2011 .

[28]  K. Tanigaki,et al.  Evidence for line nodes in the energy gap of the overdoped Ba(Fe1−xCox)2As2from low-temperature specific heat measurements , 2011, 1103.1300.

[29]  W. Hanke,et al.  Exotic d-wave superconducting state of strongly hole-doped K(x)Ba(1-x)Fe2As2. , 2011, Physical review letters.

[30]  R. Prozorov,et al.  Pseudogap and its critical point in the heavily doped Ba ( Fe 1 − x Co x ) 2 As 2 from c -axis resistivity measurements , 2010 .

[31]  Y. Tomioka,et al.  Single Crystal Growth and Characterization of the Iron-Based Superconductor KFe2As2 Synthesized by KAs Flux Method , 2010, 1009.4002.

[32]  R. Prozorov,et al.  Doping evolution of the absolute value of the London penetration depth and superfluid density in single crystals of Ba(Fe1-xCox)2As2 , 2010, 1006.2068.

[33]  R. Prozorov,et al.  Field-dependent transport critical current in single crystals of Ba(Fe1 − xTMx)2As2 (TM = Co, Ni) superconductors , 2010 .

[34]  L. Taillefer,et al.  Nodes in the gap structure of the iron arsenide superconductor Ba ( Fe 1 − x Co x ) 2 As 2 from c -axis heat transport measurements , 2010, 1004.3804.

[35]  Ching Hua Lee,et al.  Evidence for superconducting gap nodes in the zone-centered hole bands of KFe2As2 from magnetic penetration-depth measurements , 2010, 1003.6022.

[36]  I. Mazin,et al.  Superconductivity gets an iron boost , 2010, Nature.

[37]  M. Imai,et al.  Fermi Surface and Mass Enhancement in KFe2As2 from de Haas-van Alphen Effect Measurements , 2010, 1001.3441.

[38]  S. Y. Li,et al.  Quantum criticality and nodal superconductivity in the FeAs-based superconductor KFe2As2. , 2009, Physical review letters.

[39]  L. Taillefer,et al.  Doping dependence of heat transport in the iron-arsenide superconductor Ba(Fe(1-x)Co(x))2As2: from isotropic to a strongly k-dependent gap structure. , 2009, Physical review letters.

[40]  H. Eisaki,et al.  Possible Multiple Gap Superconductivity with Line Nodes in Heavily Hole-Doped Superconductor KFe2As2 Studied by 75As Nuclear Quadrupole Resonance and Specific Heat , 2009, 0906.4644.

[41]  R. Prozorov,et al.  Anisotropy of the iron pnictide superconductor Ba ( Fe 1 − x Co x ) 2 As 2 ( x = 0.074 , T c = 23 K ) , 2009 .

[42]  S. Graser,et al.  Lifting of nodes by disorder in extended-s-state superconductors : Application to ferropnictides , 2009, 0901.2653.

[43]  M. Vavilov,et al.  Superfluid density and penetration depth in the iron pnictides , 2009, 0901.0719.

[44]  M. Kanatzidis,et al.  Unconventional superconductivity in Ba0.6K0.4Fe2As2 from inelastic neutron scattering , 2008, Nature.

[45]  M. Johannes,et al.  Unconventional superconductivity with a sign reversal in the order parameter of LaFeAsO1-xFx. , 2008, Physical review letters.

[46]  D. Johrendt,et al.  Superconductivity and crystal structures of (Ba(1-x)Kx)Fe2As2 (x=0-1). , 2008, Angewandte Chemie.

[47]  M. Kanatzidis,et al.  Resonant Spin Excitation in the High Temperature Superconductor Ba0.6K0.4Fe2As2 , 2008, 0807.3932.

[48]  G. Li,et al.  Probing the superconducting energy gap from infrared spectroscopy on a Ba0.6K0.4Fe2As2 single crystal with Tc=37 K. , 2008, Physical review letters.

[49]  X. H. Chen,et al.  A BCS-like gap in the superconductor SmFeAsO0.85F0.15 , 2008, Nature.

[50]  Marcus Tegel,et al.  Superconductivity at 38 K in the iron arsenide (Ba1-xKx)Fe2As2. , 2008, Physical review letters.

[51]  X. Zhao,et al.  A universal scaling relation in high-temperature superconductors , 2004, Nature.

[52]  Yuxing Wang,et al.  Phenomenological two-gap model for the specific heat of MgB2 , 2001, cond-mat/0107196.

[53]  Shen,et al.  Fermi surface, surface states, and surface reconstruction in Sr2RuO4 , 2000, Physical review letters.

[54]  R. Prozorov,et al.  Meissner-London state in superconductors of rectangular cross section in a perpendicular magnetic field , 2000, cond-mat/0003003.

[55]  L. Taillefer,et al.  Universal Heat Conduction in YBa{sub 2}Cu{sub 3}O{sub 6.9} , 1997, cond-mat/9706025.

[56]  Hirschfeld,et al.  Effect of strong scattering on the low-temperature penetration depth of a d-wave superconductor. , 1993, Physical review. B, Condensed matter.

[57]  Morgan,et al.  Precision measurements of the temperature dependence of lambda in YBa2Cu3O6.95: Strong evidence for nodes in the gap function. , 1993, Physical review letters.

[58]  Craig T. Van Degrift,et al.  Tunnel diode oscillator for 0.001 ppm measurements at low temperatures , 1975 .