A new framework for extracting coarse-grained models from time series with multiscale structure

In many applications it is desirable to infer coarse-grained models from observational data. The observed process often corresponds only to a few selected degrees of freedom of a high-dimensional dynamical system with multiple time scales. In this work we consider the inference problem of identifying an appropriate coarse-grained model from a single time series of a multiscale system. It is known that estimators such as the maximum likelihood estimator or the quadratic variation of the path estimator can be strongly biased in this setting. Here we present a novel parametric inference methodology for problems with linear parameter dependency that does not suffer from this drawback. Furthermore, we demonstrate through a wide spectrum of examples that our methodology can be used to derive appropriate coarse-grained models from time series of partial observations of a multiscale system in an effective and systematic fashion.

[1]  I. Kevrekidis,et al.  "Coarse" stability and bifurcation analysis using time-steppers: a reaction-diffusion example. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[2]  H. Heyer Statistics of random processes I: General theory , 1983 .

[3]  Grigorios A. Pavliotis,et al.  Multiscale Methods: Averaging and Homogenization , 2008 .

[4]  E. Nadaraya On Estimating Regression , 1964 .

[5]  N. Wermuth,et al.  Nonlinear Time Series: Nonparametric and Parametric Methods , 2005 .

[6]  G. S. Watson,et al.  Smooth regression analysis , 1964 .

[7]  Dirk P. Kroese,et al.  Handbook of Monte Carlo Methods , 2011 .

[8]  Grigorios A. Pavliotis,et al.  Frequency Domain Estimation of Integrated Volatility for Itô Processes in the Presence of Market-Microstructure Noise , 2009, Multiscale Model. Simul..

[9]  Robert Azencott,et al.  Adaptive Sub-sampling for Parametric Estimation of Gaussian Diffusions , 2010 .

[10]  Michael J. Rossi,et al.  Hydrodynamics and Nonlinear Instabilities: Hydrodynamic instabilities in open flows , 1998 .

[11]  Sebastian Krumscheid Perturbation-based inference for diffusion processes: Obtaining coarse-grained models from multiscale data , 2014 .

[12]  R. Kupfermana,et al.  Fitting SDE models to nonlinear Kac – Zwanzig heat bath models , 2004 .

[13]  Konstantinos Spiliopoulos,et al.  Maximum likelihood estimation for small noise multiscale diffusions , 2013, 1301.6413.

[14]  Grigorios A. Pavliotis,et al.  Optimal control of multiscale systems using reduced-order models , 2014 .

[15]  D Venturi,et al.  Convolutionless Nakajima–Zwanzig equations for stochastic analysis in nonlinear dynamical systems , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[16]  E. Vanden-Eijnden,et al.  Analysis of multiscale methods for stochastic differential equations , 2005 .

[17]  Jerzy Leszczynski,et al.  Practical Aspects of Computational Chemistry IV , 2012 .

[18]  B. Øksendal Stochastic differential equations : an introduction with applications , 1987 .

[19]  C. J. Cotter,et al.  Estimating eddy diffusivities from noisy Lagrangian observations , 2009, 0904.4817.

[20]  Gene H. Golub,et al.  Matrix computations , 1983 .

[21]  Robert Azencott,et al.  Parametric Estimation of Stationary Stochastic Processes Under Indirect Observability , 2011 .

[22]  Ioannis G. Kevrekidis,et al.  Equation-free: The computer-aided analysis of complex multiscale systems , 2004 .

[23]  Konstantinos Spiliopoulos,et al.  Filtering the Maximum Likelihood for Multiscale Problems , 2013, Multiscale Model. Simul..

[24]  Paul F. Tupper,et al.  LONG-TERM BEHAVIOUR OF LARGE MECHANICAL SYSTEMS WITH RANDOM INITIAL DATA , 2002 .

[25]  Michael C. Mackey,et al.  Deterministic Brownian motion: The effects of perturbing a dynamical system by a chaotic semi-dynamical system , 2004 .

[26]  G. Pavliotis,et al.  New stochastic mode reduction strategy for dissipative systems. , 2013, Physical review letters.

[27]  A. Shiryayev,et al.  Statistics of Random Processes I: General Theory , 1984 .

[28]  G. A. Pavliotis,et al.  Maximum likelihood drift estimation for multiscale diffusions , 2008, 0806.3248.

[29]  Luigi Preziosi,et al.  Cell Mechanics. From single scale-based models to multiscale modeling , 2010 .

[30]  Sergey Kravtsov,et al.  Stochastic Parameterization Schemes for Use in Realistic Climate Models , 2011 .

[31]  C. W. Gear,et al.  Equation-Free, Coarse-Grained Multiscale Computation: Enabling Mocroscopic Simulators to Perform System-Level Analysis , 2003 .

[32]  A. M. Stuart,et al.  A note on diffusion limits of chaotic skew-product flows , 2011, 1101.3087.

[33]  Mark F. Horstemeyer,et al.  Multiscale Modeling: A Review , 2009 .

[34]  Lan Zhang,et al.  A Tale of Two Time Scales , 2003 .

[35]  S. Ethier,et al.  Markov Processes: Characterization and Convergence , 2005 .

[36]  John Odenckantz,et al.  Nonparametric Statistics for Stochastic Processes: Estimation and Prediction , 2000, Technometrics.

[37]  Lars Peter Hansen,et al.  Nonlinearity and Temporal Dependence , 2008 .

[38]  G. A. Pavliotis,et al.  Parameter Estimation for Multiscale Diffusions , 2007 .

[39]  Haikady N. Nagaraja,et al.  Inference in Hidden Markov Models , 2006, Technometrics.

[40]  G A Pavliotis,et al.  Noise induced state transitions, intermittency, and universality in the noisy Kuramoto-Sivashinksy equation. , 2010, Physical review letters.

[41]  G. A. Pavliotis,et al.  Multiscale modelling and inverse problems , 2010, 1009.2943.

[42]  Bruce Turkington,et al.  An Optimization Principle for Deriving Nonequilibrium Statistical Models of Hamiltonian Dynamics , 2012, 1207.2692.

[43]  A. Stuart,et al.  Extracting macroscopic dynamics: model problems and algorithms , 2004 .

[44]  Denis Bosq,et al.  Nonparametric statistics for stochastic processes , 1996 .

[45]  Eric Vanden-Eijnden,et al.  Diffusion Estimation from Multiscale Data by Operator Eigenpairs , 2011, Multiscale Model. Simul..

[46]  Michael Griebel,et al.  Numerical Simulation in Molecular Dynamics: Numerics, Algorithms, Parallelization, Applications , 2007 .

[47]  P. Doukhan Mixing: Properties and Examples , 1994 .

[48]  Andrew J Majda,et al.  An applied mathematics perspective on stochastic modelling for climate , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[49]  Eric Vanden-Eijnden,et al.  NUMERICAL TECHNIQUES FOR MULTI-SCALE DYNAMICAL SYSTEMS WITH STOCHASTIC EFFECTS ⁄ , 2003 .

[50]  Thomas Y. Hou,et al.  Numerical Analysis of Multiscale Problems , 2012 .

[51]  D. Cruz-Uribe,et al.  SHARP ERROR BOUNDS FOR THE TRAPEZOIDAL RULE AND SIMPSON'S RULE , 2002 .

[52]  A J Chorin,et al.  Optimal prediction and the Mori-Zwanzig representation of irreversible processes. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[53]  Serafim Kalliadasis,et al.  Two-dimensional droplet spreading over random topographical substrates. , 2009, Physical review letters.

[54]  D. Tseluiko,et al.  Additive noise effects in active nonlinear spatially extended systems , 2011, European Journal of Applied Mathematics.

[55]  Jacob Fish,et al.  Multiscale Methods: Bridging the Scales in Science and Engineering , 2009 .

[56]  P. Donnelly MARKOV PROCESSES Characterization and Convergence (Wiley Series in Probability and Mathematical Statistics) , 1987 .

[57]  Xiongzhi Chen Brownian Motion and Stochastic Calculus , 2008 .

[58]  Eric Moulines,et al.  Inference in hidden Markov models , 2010, Springer series in statistics.

[59]  G. Pavliotis Stochastic Processes and Applications: Diffusion Processes, the Fokker-Planck and Langevin Equations , 2014 .

[60]  P. Imkeller,et al.  Dimensional reduction in nonlinear filtering: A homogenization approach , 2011, 1112.2986.

[61]  M. Aschwanden Statistics of Random Processes , 2021, Biomedical Measurement Systems and Data Science.

[62]  Daan Crommelin Estimation of Space-Dependent Diffusions and Potential Landscapes from Non-equilibrium Data , 2012 .

[63]  Alʹbert Nikolaevich Shiri︠a︡ev,et al.  Statistics of random processes , 1977 .

[64]  Eric Vanden Eijnden Numerical techniques for multi-scale dynamical systems with stochastic effects , 2003 .

[65]  Y. Kutoyants Statistical Inference for Ergodic Diffusion Processes , 2004 .

[66]  Prakasa Rao Statistical inference for diffusion type processes , 1999 .

[67]  Georg A. Gottwald,et al.  Data Assimilation in Slow–Fast Systems Using Homogenized Climate Models , 2011, 1110.6671.

[68]  Grigorios A. Pavliotis,et al.  Semiparametric Drift and Diffusion Estimation for Multiscale Diffusions , 2013, Multiscale Model. Simul..

[69]  Giovanni Samaey,et al.  Equation-free multiscale computation: algorithms and applications. , 2009, Annual review of physical chemistry.