A new framework for extracting coarse-grained models from time series with multiscale structure
暂无分享,去创建一个
Grigorios A. Pavliotis | Serafim Kalliadasis | S. Krumscheid | G. Pavliotis | S. Krumscheid | S. Kalliadasis
[1] I. Kevrekidis,et al. "Coarse" stability and bifurcation analysis using time-steppers: a reaction-diffusion example. , 2000, Proceedings of the National Academy of Sciences of the United States of America.
[2] H. Heyer. Statistics of random processes I: General theory , 1983 .
[3] Grigorios A. Pavliotis,et al. Multiscale Methods: Averaging and Homogenization , 2008 .
[4] E. Nadaraya. On Estimating Regression , 1964 .
[5] N. Wermuth,et al. Nonlinear Time Series: Nonparametric and Parametric Methods , 2005 .
[6] G. S. Watson,et al. Smooth regression analysis , 1964 .
[7] Dirk P. Kroese,et al. Handbook of Monte Carlo Methods , 2011 .
[8] Grigorios A. Pavliotis,et al. Frequency Domain Estimation of Integrated Volatility for Itô Processes in the Presence of Market-Microstructure Noise , 2009, Multiscale Model. Simul..
[9] Robert Azencott,et al. Adaptive Sub-sampling for Parametric Estimation of Gaussian Diffusions , 2010 .
[10] Michael J. Rossi,et al. Hydrodynamics and Nonlinear Instabilities: Hydrodynamic instabilities in open flows , 1998 .
[11] Sebastian Krumscheid. Perturbation-based inference for diffusion processes: Obtaining coarse-grained models from multiscale data , 2014 .
[12] R. Kupfermana,et al. Fitting SDE models to nonlinear Kac – Zwanzig heat bath models , 2004 .
[13] Konstantinos Spiliopoulos,et al. Maximum likelihood estimation for small noise multiscale diffusions , 2013, 1301.6413.
[14] Grigorios A. Pavliotis,et al. Optimal control of multiscale systems using reduced-order models , 2014 .
[15] D Venturi,et al. Convolutionless Nakajima–Zwanzig equations for stochastic analysis in nonlinear dynamical systems , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[16] E. Vanden-Eijnden,et al. Analysis of multiscale methods for stochastic differential equations , 2005 .
[17] Jerzy Leszczynski,et al. Practical Aspects of Computational Chemistry IV , 2012 .
[18] B. Øksendal. Stochastic differential equations : an introduction with applications , 1987 .
[19] C. J. Cotter,et al. Estimating eddy diffusivities from noisy Lagrangian observations , 2009, 0904.4817.
[20] Gene H. Golub,et al. Matrix computations , 1983 .
[21] Robert Azencott,et al. Parametric Estimation of Stationary Stochastic Processes Under Indirect Observability , 2011 .
[22] Ioannis G. Kevrekidis,et al. Equation-free: The computer-aided analysis of complex multiscale systems , 2004 .
[23] Konstantinos Spiliopoulos,et al. Filtering the Maximum Likelihood for Multiscale Problems , 2013, Multiscale Model. Simul..
[24] Paul F. Tupper,et al. LONG-TERM BEHAVIOUR OF LARGE MECHANICAL SYSTEMS WITH RANDOM INITIAL DATA , 2002 .
[25] Michael C. Mackey,et al. Deterministic Brownian motion: The effects of perturbing a dynamical system by a chaotic semi-dynamical system , 2004 .
[26] G. Pavliotis,et al. New stochastic mode reduction strategy for dissipative systems. , 2013, Physical review letters.
[27] A. Shiryayev,et al. Statistics of Random Processes I: General Theory , 1984 .
[28] G. A. Pavliotis,et al. Maximum likelihood drift estimation for multiscale diffusions , 2008, 0806.3248.
[29] Luigi Preziosi,et al. Cell Mechanics. From single scale-based models to multiscale modeling , 2010 .
[30] Sergey Kravtsov,et al. Stochastic Parameterization Schemes for Use in Realistic Climate Models , 2011 .
[31] C. W. Gear,et al. Equation-Free, Coarse-Grained Multiscale Computation: Enabling Mocroscopic Simulators to Perform System-Level Analysis , 2003 .
[32] A. M. Stuart,et al. A note on diffusion limits of chaotic skew-product flows , 2011, 1101.3087.
[33] Mark F. Horstemeyer,et al. Multiscale Modeling: A Review , 2009 .
[34] Lan Zhang,et al. A Tale of Two Time Scales , 2003 .
[35] S. Ethier,et al. Markov Processes: Characterization and Convergence , 2005 .
[36] John Odenckantz,et al. Nonparametric Statistics for Stochastic Processes: Estimation and Prediction , 2000, Technometrics.
[37] Lars Peter Hansen,et al. Nonlinearity and Temporal Dependence , 2008 .
[38] G. A. Pavliotis,et al. Parameter Estimation for Multiscale Diffusions , 2007 .
[39] Haikady N. Nagaraja,et al. Inference in Hidden Markov Models , 2006, Technometrics.
[40] G A Pavliotis,et al. Noise induced state transitions, intermittency, and universality in the noisy Kuramoto-Sivashinksy equation. , 2010, Physical review letters.
[41] G. A. Pavliotis,et al. Multiscale modelling and inverse problems , 2010, 1009.2943.
[42] Bruce Turkington,et al. An Optimization Principle for Deriving Nonequilibrium Statistical Models of Hamiltonian Dynamics , 2012, 1207.2692.
[43] A. Stuart,et al. Extracting macroscopic dynamics: model problems and algorithms , 2004 .
[44] Denis Bosq,et al. Nonparametric statistics for stochastic processes , 1996 .
[45] Eric Vanden-Eijnden,et al. Diffusion Estimation from Multiscale Data by Operator Eigenpairs , 2011, Multiscale Model. Simul..
[46] Michael Griebel,et al. Numerical Simulation in Molecular Dynamics: Numerics, Algorithms, Parallelization, Applications , 2007 .
[47] P. Doukhan. Mixing: Properties and Examples , 1994 .
[48] Andrew J Majda,et al. An applied mathematics perspective on stochastic modelling for climate , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[49] Eric Vanden-Eijnden,et al. NUMERICAL TECHNIQUES FOR MULTI-SCALE DYNAMICAL SYSTEMS WITH STOCHASTIC EFFECTS ⁄ , 2003 .
[50] Thomas Y. Hou,et al. Numerical Analysis of Multiscale Problems , 2012 .
[51] D. Cruz-Uribe,et al. SHARP ERROR BOUNDS FOR THE TRAPEZOIDAL RULE AND SIMPSON'S RULE , 2002 .
[52] A J Chorin,et al. Optimal prediction and the Mori-Zwanzig representation of irreversible processes. , 2000, Proceedings of the National Academy of Sciences of the United States of America.
[53] Serafim Kalliadasis,et al. Two-dimensional droplet spreading over random topographical substrates. , 2009, Physical review letters.
[54] D. Tseluiko,et al. Additive noise effects in active nonlinear spatially extended systems , 2011, European Journal of Applied Mathematics.
[55] Jacob Fish,et al. Multiscale Methods: Bridging the Scales in Science and Engineering , 2009 .
[56] P. Donnelly. MARKOV PROCESSES Characterization and Convergence (Wiley Series in Probability and Mathematical Statistics) , 1987 .
[57] Xiongzhi Chen. Brownian Motion and Stochastic Calculus , 2008 .
[58] Eric Moulines,et al. Inference in hidden Markov models , 2010, Springer series in statistics.
[59] G. Pavliotis. Stochastic Processes and Applications: Diffusion Processes, the Fokker-Planck and Langevin Equations , 2014 .
[60] P. Imkeller,et al. Dimensional reduction in nonlinear filtering: A homogenization approach , 2011, 1112.2986.
[61] M. Aschwanden. Statistics of Random Processes , 2021, Biomedical Measurement Systems and Data Science.
[62] Daan Crommelin. Estimation of Space-Dependent Diffusions and Potential Landscapes from Non-equilibrium Data , 2012 .
[63] Alʹbert Nikolaevich Shiri︠a︡ev,et al. Statistics of random processes , 1977 .
[64] Eric Vanden Eijnden. Numerical techniques for multi-scale dynamical systems with stochastic effects , 2003 .
[65] Y. Kutoyants. Statistical Inference for Ergodic Diffusion Processes , 2004 .
[66] Prakasa Rao. Statistical inference for diffusion type processes , 1999 .
[67] Georg A. Gottwald,et al. Data Assimilation in Slow–Fast Systems Using Homogenized Climate Models , 2011, 1110.6671.
[68] Grigorios A. Pavliotis,et al. Semiparametric Drift and Diffusion Estimation for Multiscale Diffusions , 2013, Multiscale Model. Simul..
[69] Giovanni Samaey,et al. Equation-free multiscale computation: algorithms and applications. , 2009, Annual review of physical chemistry.