Reconfigurable liquid-metal RF devices for wireless communications

Reconfigurable Liquid-Metal RF Devices for Wireless Communications by Andy M. Morishita Master of Science in Electrical Engineering University of Hawaii, Manoa Wayne A. Shiroma, Chair With the popularity and advancing capabilities of wireless communication technology, there is a great need for radio frequency (RF) front end components to be able to be reconfigure its characteristics. These reconfigurable devices would allow future communication systems to operate in di↵erent conditions such as wide or multi-band frequencies, and to change other characteristics that satisfy the growing needs of users and developers. This thesis focuses on the development of liquid metal technology by implementing three types of RF and microwave devices for reconfigurable wireless communication applications. The three types of devices described include two antennas, a balun, and an amplifier. The liquid metal is actuated using pressure or electric actuation. The devices were designed, tested, and characterized and show promising development and use for future reconfigurable architectures.

[1]  A. Akhnoukh,et al.  Adaptive Multi-Band Multi-Mode Power Amplifier Using Integrated Varactor-Based Tunable Matching Networks , 2006, IEEE Journal of Solid-State Circuits.

[2]  Xing Lan,et al.  An Ultra-Wideband Balun Using Multi-Metal GaAs MMIC Technology , 2010, IEEE Microwave and Wireless Components Letters.

[3]  D. Peroulis,et al.  A MEMS reconfigurable matching network for a class AB amplifier , 2003, IEEE Microwave and Wireless Components Letters.

[4]  Aaron T. Ohta,et al.  A tunable amplifier using reconfigurable liquid-metal double-stub tuners , 2015, 2015 Texas Symposium on Wireless and Microwave Circuits and Systems (WMCS).

[5]  Arnan Mitchell,et al.  Electrochemically induced actuation of liquid metal marbles. , 2013, Nanoscale.

[6]  A. Rydberg,et al.  Foldable and Stretchable Liquid Metal Planar Inverted Cone Antenna , 2009, IEEE Transactions on Antennas and Propagation.

[7]  G. Lazzi,et al.  Flexible Liquid Metal Alloy (EGaIn) Microstrip Patch Antenna , 2012, IEEE Transactions on Antennas and Propagation.

[8]  Aaron T. Ohta,et al.  Reconfigurable coupled-line bandpass filter with electrically actuated liquid-metal tuning , 2014, 2014 Asia-Pacific Microwave Conference.

[9]  Bao-Hua Sun,et al.  Modified two-element Yagi-Uda antenna with tunable beams , 2010 .

[10]  Parveen Wahid,et al.  A reconfigurable Yagi Antenna for wireless communications , 2003 .

[11]  L. Jofre,et al.  Circular Beam-Steering Reconfigurable Antenna With Liquid Metal Parasitics , 2012, IEEE Transactions on Antennas and Propagation.

[12]  Non-toxic liquid metal microstrip resonators , 2009, 2009 Asia Pacific Microwave Conference.

[13]  G. Whitesides,et al.  Stretchable Microfluidic Radiofrequency Antennas , 2010, Advanced materials.

[14]  Aaron T. Ohta,et al.  A Liquid-Metal Monopole Array With Tunable Frequency, Gain, and Beam Steering , 2013, IEEE Antennas and Wireless Propagation Letters.

[15]  J. Rogers,et al.  A 6 to 20 GHz planar balun using a Wilkinson divider and Lange couplers , 1991, 1991 IEEE MTT-S International Microwave Symposium Digest.

[16]  Bao Jun Lei,et al.  A Wideband, Pressure-Driven, Liquid-Tunable Frequency Selective Surface , 2011, IEEE Microwave and Wireless Components Letters.

[17]  C. Kim,et al.  A liquid-filled microrelay with a moving mercury microdrop , 1997 .

[18]  Z. Milosavljevic RF MEMS Switches , 2004 .

[19]  T. S. Bird,et al.  A Frequency Reconfigurable Printed Yagi-Uda Dipole Antenna for Cognitive Radio Applications , 2012, IEEE Transactions on Antennas and Propagation.

[20]  A. Mahanfar,et al.  A Reconfigurable Patch Antenna Using Liquid Metal Embedded in a Silicone Substrate , 2011, IEEE Transactions on Antennas and Propagation.

[21]  Aaron T. Ohta,et al.  A liquid-metal reconfigurable log-periodic balun , 2014, 2014 IEEE MTT-S International Microwave Symposium (IMS2014).

[22]  A.C. Chen,et al.  Development of low-loss broad-band planar baluns using multilayered organic thin films , 2005, IEEE Transactions on Microwave Theory and Techniques.

[23]  D. Peroulis,et al.  Liquid RF MEMS Wideband Reflective and Absorptive Switches , 2007, IEEE Transactions on Microwave Theory and Techniques.

[24]  Pedro Pinho,et al.  Compact, Frequency Reconfigurable, Printed Monopole Antenna , 2012 .

[25]  Michael D. Dickey,et al.  Giant and switchable surface activity of liquid metal via surface oxidation , 2014, Proceedings of the National Academy of Sciences.

[26]  Hamid Reza Hassani,et al.  Compact polarisation reconfigurable printed monopole antenna at 2.4 GHz , 2013 .

[27]  Wenqi Hu,et al.  Continuous Electrowetting of Non-toxic Liquid Metal for RF Applications , 2014, IEEE Access.

[28]  G. Lazzi,et al.  A Pressure Responsive Fluidic Microstrip Open Stub Resonator Using a Liquid Metal Alloy , 2012, IEEE Microwave and Wireless Components Letters.

[29]  M. Dickey,et al.  A frequency shifting liquid metal antenna with pressure responsiveness , 2011 .

[30]  C. Kim,et al.  Surface-tension-driven microactuation based on continuous electrowetting , 2000, Journal of Microelectromechanical Systems.

[31]  M.Y.W. Chia,et al.  A new wide-band planar balun on a single-layer PCB , 2005, IEEE Microwave and Wireless Components Letters.

[32]  Ke Wu,et al.  A Broadband Substrate Integrated Waveguide (SIW) Planar Balun , 2007, IEEE Microwave and Wireless Components Letters.

[33]  Sungkyun Lim,et al.  Design of a Multidirectional, High-Gain Compact Yagi Antenna , 2009, IEEE Antennas and Wireless Propagation Letters.

[34]  Hao Ling,et al.  Design of electrically small, pattern reconfigurable Yagi antenna , 2007 .

[35]  Wenqi Hu,et al.  A tunable low-pass filter using a liquid-metal reconfigurable periodic defected ground structure , 2012, 2012 IEEE/MTT-S International Microwave Symposium Digest.

[36]  Raafat R. Mansour,et al.  Reconfigurable amplifier with tunable impedance matching networks based on CMOS-MEMS capacitors in 0.18-µm CMOS technology , 2009 .

[37]  Kenjiro Nishikawa,et al.  Compact and broad-band three-dimensional MMIC balun , 1999 .

[38]  Chang-Jin Kim,et al.  Characterization of Nontoxic Liquid-Metal Alloy Galinstan for Applications in Microdevices , 2012, Journal of Microelectromechanical Systems.

[39]  D. Peroulis,et al.  A SILICON-BASED GALINSTAN MAGNETOHYDRODYNAMIC PUMP , 2009 .

[40]  Aaron T. Ohta,et al.  A liquid-metal reconfigurable Yagi-Uda monopole array , 2013, 2013 IEEE MTT-S International Microwave Symposium Digest (MTT).

[41]  H. Boudaghi,et al.  A Frequency-Reconfigurable Monopole Antenna Using Switchable Slotted Ground Structure , 2012, IEEE Antennas and Wireless Propagation Letters.

[42]  Wenqi Hu,et al.  A liquid-metal reconfigurable double-stub tuner , 2012, 2012 IEEE/MTT-S International Microwave Symposium Digest.

[43]  Sooliam Ooi,et al.  Electronically tunable monopole antenna , 2008, 2008 IEEE Antennas and Propagation Society International Symposium.

[44]  Dimitrios Peroulis,et al.  A 12–18 GHz electrostatically tunable liquid metal RF MEMS resonator with quality factor of 1400–1840 , 2011, 2011 IEEE MTT-S International Microwave Symposium.

[45]  Mahmoud Al Basraoui,et al.  Wideband planar log‐periodic balun , 2001 .

[46]  Magdy F. Iskander Electromagnetic Fields and Waves , 2000 .

[47]  Aaron T. Ohta,et al.  Two-octave tunable liquid-metal monopole antenna , 2014 .