Dual-stage repetitive control with Prandtl-Ishlinskii hysteresis inversion for piezo-based nanopositioning

Abstract The positioning performance of piezo-based nanopositioning systems is limited by dynamic and hysteresis effects in the piezoactuator. Herein, a high-performance, dual-stage repetitive controller (dual-RC) with a feedforward hysteresis compensator is proposed for tracking periodic trajectories, such as the scanning-type motion, in nanopositioning systems. Firstly, a discrete-time dual-RC is created by cascading a conventional RC with an odd-harmonic RC. The favorable gain characteristics of the dual-RC coincide with the odd harmonics of the scanning-type periodic reference trajectory, thus offering good robustness and low tracking error. Secondly, a new inverse-hysteresis compensator is developed based on the Prandtl–Ishlinskii hysteresis model. The structure of the inverse model mimics the structure of the forward model, where the parameters of the inverse model can be easily identified from measured input–output data. Finally, the controllers are applied to a custom-designed high-speed nanopositioner, and simulations and experimental results are provided to illustrate the performance improvement of the proposed control scheme compared to industry-standard PID control and conventional RC. High-speed positioning results (tracking of triangle scan trajectories) at rates of 1 kHz, 1.5 kHz, and 2 kHz are shown. Compared to a conventional RC, the tracking error of the dual-RC is 48% lower at 1 kHz and 33% lower at 2 kHz scanning frequency. It is also shown that by compensating for hysteresis, the performance of the RC system designed based on the linear dynamics can be enhanced.

[1]  Kam K. Leang,et al.  Repetitive control with Prandtl-Ishlinskii hysteresis inverse for piezo-based nanopositioning , 2009, 2009 American Control Conference.

[2]  Masayoshi Tomizuka,et al.  Digital Control Of Repetitive Errors In Disk Drive Systems , 1989, 1989 American Control Conference.

[3]  Georg Schitter,et al.  Data acquisition system for high speed atomic force microscopy , 2005 .

[4]  Willem L. De Koning,et al.  State-space analysis and identification for a class of hysteretic systems , 2001, Autom..

[5]  S. Devasia,et al.  Feedforward control of piezoactuators in atomic force microscope systems , 2009, IEEE Control Systems.

[6]  Santosh Devasia,et al.  Design of hysteresis-compensating iterative learning control for piezo-positioners: Application to atomic force microscopes , 2006 .

[7]  T. Ando,et al.  High-speed atomic force microscopy for nano-visualization of dynamic biomolecular processes , 2008 .

[8]  D. Croft,et al.  Creep, Hysteresis, and Vibration Compensation for Piezoactuators: Atomic Force Microscopy Application , 2001 .

[9]  K.K. Leang,et al.  Published online in Wiley InterScience (www.interscience.wiley.com) DOI: 10.1002/asjc.090 HIGH-SPEED SERIAL-KINEMATIC SPM SCANNER: DESIGN AND DRIVE CONSIDERATIONS , 2022 .

[10]  Siep Weiland,et al.  Design of noise and period-time robust high-order repetitive control, with application to optical storage , 2007, Autom..

[11]  Shang-Liang Chen,et al.  Repetitive control design and implementation for linear motor machine tool , 2007 .

[12]  Kevin L. Moore,et al.  Iterative learning control: A survey and new results , 1992, J. Field Robotics.

[13]  Eric Rogers,et al.  Stable repetitive control by frequency aliasing , 2005, ICINCO.

[14]  Ping Ge,et al.  Tracking control of a piezoceramic actuator , 1996, IEEE Trans. Control. Syst. Technol..

[15]  Musa Jouaneh,et al.  Generalized preisach model for hysteresis nonlinearity of piezoceramic actuators , 1997 .

[16]  Michael Goldfarb,et al.  Modeling Piezoelectric Stack Actuators for Control of Mlcromanlpulatlon , 2022 .

[17]  J. Doyle,et al.  Essentials of Robust Control , 1997 .

[18]  Ramon Costa Castelló,et al.  Odd-Harmonic Digital Repetitive Control of a Single-Phase Current Active Filter , 2004 .

[19]  M.V. Salapaka,et al.  Scanning Probe Microscopy , 2008, IEEE Control Systems.

[20]  Andrew J. Fleming,et al.  High‐speed serial‐kinematic SPM scanner: design and drive considerations , 2009 .

[21]  Armen Der Kiureghian,et al.  Generalized Bouc-Wen model for highly asymmetric hysteresis , 2006 .

[22]  Toshio Ando,et al.  High-speed atomic force microscopy , 2012 .

[23]  Andrew J Fleming,et al.  Compact ultra-fast vertical nanopositioner for improving scanning probe microscope scan speed. , 2011, The Review of scientific instruments.

[24]  Hyun-Sik Ahn Design of a Repetitive Control System for a Piezoelectric Actuator Based on the Inverse Hysteresis Model , 2003, 2003 4th International Conference on Control and Automation Proceedings.

[25]  M Radmacher,et al.  Measuring the elastic properties of biological samples with the AFM. , 1997, IEEE engineering in medicine and biology magazine : the quarterly magazine of the Engineering in Medicine & Biology Society.

[26]  Andrew J. Fleming,et al.  Evaluation of charge drives for scanning probe microscope positioning stages , 2008, ACC.

[27]  Kam K. Leang,et al.  Design and Analysis of Discrete-Time Repetitive Control for Scanning Probe Microscopes , 2009 .

[28]  Michio Nakano,et al.  High Accuracy Control of a Proton Synchrotron Magnet Power Supply , 1981 .

[29]  Kam K Leang,et al.  Design, characterization, and control of a monolithic three-axis high-bandwidth nanopositioning stage , 2010, Proceedings of the 2010 American Control Conference.

[30]  Qingze Zou,et al.  A review of feedforward control approaches in nanopositioning for high-speed spm , 2009 .

[31]  Tsu-Chin Tsao,et al.  A Performance Enhancement Scheme for Robust Repetitive Control System , 2004 .

[32]  Bin Zhang,et al.  Dual-mode structure digital repetitive control , 2007, Autom..

[33]  C.James Li,et al.  To improve workpiece roundness in precision diamond turning by in situ measurement and repetitive control , 1996 .

[34]  Mark Gee,et al.  Time dependent behaviour of piezo-electric materials. , 1999 .

[35]  Nagi G. Naganathan,et al.  Dynamic Preisach modelling of hysteresis for the piezoceramic actuator system , 2001 .

[36]  Chun-Yi Su,et al.  Development of the rate-dependent Prandtl–Ishlinskii model for smart actuators , 2008 .

[37]  Suguru Arimoto,et al.  Bettering operation of Robots by learning , 1984, J. Field Robotics.

[38]  Klaus Kuhnen,et al.  Modeling, Identification and Compensation of Complex Hysteretic Nonlinearities: A Modified Prandtl - Ishlinskii Approach , 2003, Eur. J. Control.

[39]  M. Brokate,et al.  Hysteresis and Phase Transitions , 1996 .

[40]  Soo-Ryong Nam,et al.  A piezoelectrically driven micro-positioning system for the ductile-mode grinding of brittle materials , 1996 .

[41]  Reinder Banning,et al.  Modeling piezoelectric actuators , 2000 .

[42]  John A. Main,et al.  Piezoelectric Stack Actuators and Control System Design: Strategies and Pitfalls , 1997 .

[43]  Yi Guo,et al.  An H∞ almost disturbance decoupling robust controller design for a piezoelectric bimorph actuator with hysteresis , 1999, IEEE Trans. Control. Syst. Technol..

[44]  S. Hara,et al.  Repetitive control system: a new type servo system for periodic exogenous signals , 1988 .

[45]  Qingze Zou,et al.  Iterative Control Approach to Compensate for Both the Hysteresis and the Dynamics Effects of Piezo Actuators , 2007, IEEE Transactions on Control Systems Technology.

[46]  Bruce A. Francis,et al.  The internal model principle of control theory , 1976, Autom..

[47]  R. G. Molyet,et al.  A new approach to phase cancellation in repetitive control , 1994, Proceedings of 1994 IEEE Industry Applications Society Annual Meeting.

[48]  Ho‐Jun Lee,et al.  The Effect of Temperature Dependent Material Properties on the Response of Piezoelectric Composite Materials , 1998 .

[49]  A. Fleming,et al.  A grounded-load charge amplifier for reducing hysteresis in piezoelectric tube scanners , 2005 .

[50]  Bin Zhang,et al.  Plug-In Dual-Mode-Structure Repetitive Controller for CVCF PWM Inverters , 2009, IEEE Trans. Ind. Electron..

[51]  Masayoshi Tomizuka,et al.  Discrete-Time Domain Analysis and Synthesis of Repetitive Controllers , 1988, 1988 American Control Conference.