Schrödinger cats and their power for quantum information processing

We outline a toolbox comprised of passive optical elements, single photon detection and superpositions of coherent states (Schrodinger cat states). Such a toolbox is a powerful collection of primitives for quantum information processing tasks. We illustrate its use by outlining a proposal for universal quantum computation. We utilize this toolbox for quantum metrology applications, for instance weak force measurements and precise phase estimation. We show in both these cases that a sensitivity at the Heisenberg limit is achievable.

[1]  T. Ralph Coherent superposition states as quantum rulers , 2002 .

[2]  J. Cirac,et al.  Improvement of frequency standards with quantum entanglement , 1997, quant-ph/9707014.

[3]  Shigeki Takeuchi,et al.  Development of a high-quantum-efficiency single-photon counting system , 1999 .

[4]  T. Anhut,et al.  Generating Schrödinger-cat-like states by means of conditional measurements on a beam splitter , 1997 .

[5]  B. Sanders,et al.  Quantum encodings in spin systems and harmonic oscillators , 2001, quant-ph/0109066.

[6]  M. S. Kim,et al.  Efficient quantum computation using coherent states , 2001, quant-ph/0109077.

[7]  M. Teich,et al.  Entangled-Photon Virtual-State Spectroscopy , 1998 .

[8]  Seth Lloyd,et al.  Quantum Computation over Continuous Variables , 1999 .

[9]  Wineland,et al.  Optimal frequency measurements with maximally correlated states. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[10]  O. Hirota,et al.  Entangled coherent states: Teleportation and decoherence , 2001 .

[11]  A. Peres When is a quantum measurement , 1986 .

[12]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[13]  Shigeki Takeuchi,et al.  Multiphoton detection using visible light photon counter , 1999 .

[14]  Song,et al.  Generation of superpositions of classically distinguishable quantum states from optical back-action evasion. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[15]  Samuel L. Braunstein,et al.  Weak-force detection with superposed coherent states , 2002 .

[16]  V. Sandberg,et al.  ON THE MEASUREMENT OF A WEAK CLASSICAL FORCE COUPLED TO A QUANTUM MECHANICAL OSCILLATOR. I. ISSUES OF PRINCIPLE , 1980 .

[17]  Improving quantum interferometry by using entanglement , 2001, quant-ph/0110105.

[18]  Gerard J. Milburn,et al.  Quantum Computation with Coherent States, Linear Interactions and Superposed Resources , 2001 .

[19]  J. Preskill,et al.  Encoding a qubit in an oscillator , 2000, quant-ph/0008040.

[20]  Milburn,et al.  Quantum optical Fredkin gate. , 1989, Physical review letters.

[21]  Kimble,et al.  Unconditional quantum teleportation , 1998, Science.

[22]  R. Dicke Coherence in Spontaneous Radiation Processes , 1954 .

[23]  Kimble,et al.  Spectroscopy with squeezed light. , 1992, Physical review letters.

[24]  G. Milburn,et al.  Quantum computation with optical coherent states , 2002, QELS 2002.

[25]  G. Milburn,et al.  Generalized uncertainty relations: Theory, examples, and Lorentz invariance , 1995, quant-ph/9507004.

[26]  G M D'Ariano,et al.  Using entanglement improves the precision of quantum measurements. , 2001, Physical review letters.

[27]  Kolobov,et al.  Quantum limits on optical resolution , 2000, Physical review letters.

[28]  Andrew G. Glen,et al.  APPL , 2001 .