Approximations for Monotone and Nonmonotone Submodular Maximization with Knapsack Constraints

Submodular maximization generalizes many fundamental problems in discrete optimization, including Max-Cut in directed/undirected graphs, maximum coverage, maximum facility location, and marketing over social networks. In this paper we consider the problem of maximizing any submodular function subject to d knapsack constraints, where d is a fixed constant. We establish a strong relation between the discrete problem and its continuous relaxation, obtained through extension by expectation of the submodular function. Formally, we show that, for any nonnegative submodular function, an α-approximation algorithm for the continuous relaxation implies a randomized α-e-approximation algorithm for the discrete problem. We use this relation to obtain an e-1-e-approximation for the problem, and a nearly optimal 1-e-1-e-approximation ratio for the monotone case, for any e > 0. We further show that the probabilistic domain defined by a continuous solution can be reduced to yield a polynomial-size domain, given an oracle for the extension by expectation. This leads to a deterministic version of our technique.

[1]  Joseph Naor,et al.  A Unified Continuous Greedy Algorithm for Submodular Maximization , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[2]  Vahab S. Mirrokni,et al.  Maximizing Non-Monotone Submodular Functions , 2011, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[3]  Morteza Zadimoghaddam,et al.  Scheduling to minimize power consumption using submodular functions , 2010, SPAA '10.

[4]  Deeparnab Chakrabarty,et al.  Knapsack Problems , 2008 .

[5]  Alexander Schrijver,et al.  Combinatorial optimization. Polyhedra and efficiency. , 2003 .

[6]  Jan Vondrák,et al.  Dependent Randomized Rounding via Exchange Properties of Combinatorial Structures , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[7]  Hadas Shachnai,et al.  There is no EPTAS for two-dimensional knapsack , 2010, Inf. Process. Lett..

[8]  Maxim Sviridenko,et al.  Pipage Rounding: A New Method of Constructing Algorithms with Proven Performance Guarantee , 2004, J. Comb. Optim..

[9]  Hadas Shachnai,et al.  Maximizing submodular set functions subject to multiple linear constraints , 2009, SODA.

[10]  Laurence A. Wolsey,et al.  Best Algorithms for Approximating the Maximum of a Submodular Set Function , 1978, Math. Oper. Res..

[11]  Jan Vondrák,et al.  Optimal approximation for the submodular welfare problem in the value oracle model , 2008, STOC.

[12]  Chandra Chekuri,et al.  Submodular function maximization via the multilinear relaxation and contention resolution schemes , 2011, STOC '11.

[13]  A. Kulik Submodular and Linear Maximization with Knapsack Constraints , 2011 .

[14]  Jan Vondrák,et al.  Submodular maximization by simulated annealing , 2010, SODA '11.

[15]  Jan Vondrák,et al.  Maximizing a Submodular Set Function Subject to a Matroid Constraint (Extended Abstract) , 2007, IPCO.

[16]  Aravind Srinivasan,et al.  On k-Column Sparse Packing Programs , 2009, IPCO.

[17]  Samir Khuller,et al.  The Budgeted Maximum Coverage Problem , 1999, Inf. Process. Lett..

[18]  Mohammad Ali Safari,et al.  Maximizing Submodular Set Functions Subject to Different Constraints: Combined Algorithms , 2011, arXiv.org.

[19]  Toshihiro Fujito,et al.  Approximation algorithms for submodular set cover with applications , 2000 .

[20]  Vahab S. Mirrokni,et al.  Optimal marketing strategies over social networks , 2008, WWW.

[21]  Vahab Mirrokni,et al.  Maximizing Non-Monotone Submodular Functions , 2007, FOCS 2007.

[22]  M. L. Fisher,et al.  An analysis of approximations for maximizing submodular set functions—I , 1978, Math. Program..

[23]  J. Vondrák,et al.  Submodular Function Maximization via the Multilinear Relaxation and Contention Resolution Schemes , 2014 .

[24]  Amit Kumar,et al.  Maximum Coverage Problem with Group Budget Constraints and Applications , 2004, APPROX-RANDOM.

[25]  Jan Vondrák,et al.  Maximizing a Monotone Submodular Function Subject to a Matroid Constraint , 2011, SIAM J. Comput..

[26]  Maxim Sviridenko,et al.  A note on maximizing a submodular set function subject to a knapsack constraint , 2004, Oper. Res. Lett..

[27]  Vahab S. Mirrokni,et al.  Non-monotone submodular maximization under matroid and knapsack constraints , 2009, STOC '09.

[28]  Maw-Sheng Chern,et al.  A Note on Approximation Schemes for Multidimensional Knapsack Problems , 1984, Math. Oper. Res..

[29]  Mohammad Ali Safari,et al.  Maximizing non-monotone submodular set functions subject to different constraints: Combined algorithms , 2011, Oper. Res. Lett..