Geometric evolution equations for hypersurfaces

[1]  G. Huisken Asymptotic-behavior for singularities of the mean-curvature flow , 1990 .

[2]  Gerhard Huisken,et al.  Mean curvature flow singularities for mean convex surfaces , 1999 .

[3]  R. Hamilton Three-manifolds with positive Ricci curvature , 1982 .

[4]  R. Geroch,et al.  ENERGY EXTRACTION * , 1973 .

[5]  J. Dieudonne Foundations of Modern Analysis , 1969 .

[6]  G. Huisken,et al.  The Riemannian Penrose inequality , 1997 .

[7]  L. Evans,et al.  Motion of level sets by mean curvature. II , 1992 .

[8]  G. Huisken Contracting convex hypersurfaces in Riemannian manifolds by their mean curvature , 1986 .

[9]  G. Huisken Flow by mean curvature of convex surfaces into spheres , 1984 .

[10]  Kenneth A. Brakke,et al.  The motion of a surface by its mean curvature , 2015 .

[11]  G. Huisken,et al.  Interior estimates for hypersurfaces moving by mean curvature , 1991 .

[12]  G. Huisken,et al.  Mean curvature evolution of entire graphs , 1989 .

[13]  R. Hamilton Harnack estimate for the mean curvature flow , 1995 .

[14]  A. Friedman Partial Differential Equations of Parabolic Type , 1983 .

[15]  Kaising Tso,et al.  Deforming a hypersurface by its Gauss-Kronecker curvature , 1985 .

[16]  Thierry Aubin,et al.  Nonlinear analysis on manifolds, Monge-Ampère equations , 1982 .

[17]  Gerhard Huisken,et al.  A distance comparison principle for evolving curves , 1998 .

[18]  B. Andrews Monotone quantities and unique limits for evolving convex hypersurfaces , 1997 .

[19]  James Simons,et al.  Minimal Varieties in Riemannian Manifolds , 1968 .

[20]  B. White Partial regularity of mean-convex hypersurfaces flowing by mean curvature , 1994 .

[21]  S. Yau,et al.  Curvature estimates for minimal hypersurfaces , 1975 .

[22]  Yun-Gang Chen,et al.  Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations , 1989 .

[23]  R. Hamilton,et al.  The formations of singularities in the Ricci Flow , 1993 .

[24]  J. Nash,et al.  PARABOLIC EQUATIONS. , 1957, Proceedings of the National Academy of Sciences of the United States of America.

[25]  J. Taylor,et al.  Shape evolution by surface diffusion and surface attachment limited kinetics on completely faceted surfaces , 1995 .

[26]  John Urbas,et al.  On the expansion of starshaped hypersurfaces by symmetric functions of their principal curvatures , 1990 .

[27]  Ben Andrews,et al.  Contraction of convex hypersurfaces by their affine normal , 1996 .

[28]  F. Trèves Relations de domination entre opérateurs différentiels , 1959 .

[29]  Ben Andrews,et al.  Contraction of convex hypersurfaces in Euclidean space , 1994 .

[30]  S. Angenent,et al.  Degenerate neckpinches in mean curvature flow. , 1997 .

[31]  G. Huisken,et al.  Convexity estimates for mean curvature flow and singularities of mean convex surfaces , 1999 .

[32]  G. Sapiro,et al.  On affine plane curve evolution , 1994 .

[33]  M. Grayson The heat equation shrinks embedded plane curves to round points , 1987 .

[34]  William J. Firey,et al.  Shapes of worn stones , 1974 .

[35]  M. Grayson Shortening embedded curves , 1989 .

[36]  D. DeTurck Deforming metrics in the direction of their Ricci tensors , 1983 .

[37]  Gerhard Huisken,et al.  Local and global behaviour of hypersurfaces moving by mean curvature , 1993 .

[38]  W. Mullins Two‐Dimensional Motion of Idealized Grain Boundaries , 1956 .

[39]  Bennett Chow,et al.  Deforming convex hypersurfaces by the $n$th root of the Gaussian curvature , 1985 .

[40]  Claus Gerhardt,et al.  Flow of nonconvex hypersurfaces into spheres , 1990 .

[41]  R. Hamilton Four-manifolds with positive isotropic curvature , 1997 .

[42]  G. Huisken,et al.  The inverse mean curvature flow and the Riemannian Penrose Inequality , 2001 .

[43]  B. Andrews Contraction of convex hypersurfaces in Riemannian spaces , 1994 .

[44]  T. Ilmanen Elliptic regularization and partial regularity for motion by mean curvature , 1994 .

[45]  B. Andrews Gauss curvature flow: the fate of the rolling stones , 1999 .

[46]  J. Lions,et al.  Sur les problèmes mixtes pour certains systèmes paraboliques dans les ouverts non cylindriques , 1957 .

[47]  R. Hamilton ISOPERIMETRIC ESTIMATES FOR THE CURVE SHRINKING FLOW IN THE PLANE , 1996 .

[48]  M. Gage,et al.  The heat equation shrinking convex plane curves , 1986 .