End-resection at DNA double-strand breaks in the three domains of life

During DNA repair by HR (homologous recombination), the ends of a DNA DSB (double-strand break) must be resected to generate single-stranded tails, which are required for strand invasion and exchange with homologous chromosomes. This 5′–3′ end-resection of the DNA duplex is an essential process, conserved across all three domains of life: the bacteria, eukaryota and archaea. In the present review, we examine the numerous and redundant helicase and nuclease systems that function as the enzymatic analogues for this crucial process in the three major phylogenetic divisions.

[1]  James E. Haber,et al.  The Saccharomyces cerevisiae Chromatin Remodeler Fun30 Regulates DNA End Resection and Checkpoint Deactivation , 2012, Molecular and Cellular Biology.

[2]  S. Boulton,et al.  Playing the end game: DNA double-strand break repair pathway choice. , 2012, Molecular cell.

[3]  Agnès Thierry,et al.  The yeast Fun30 and human SMARCAD1 chromatin remodelers promote DNA end resection , 2012, Nature.

[4]  Gerald R. Smith How RecBCD Enzyme and Chi Promote DNA Break Repair and Recombination: a Molecular Biologist's View , 2012, Microbiology and Molecular Reviews.

[5]  D. Wigley,et al.  Alteration of χ recognition by RecBCD reveals a regulated molecular latch and suggests a channel-bypass mechanism for biological control , 2012, Proceedings of the National Academy of Sciences.

[6]  D. Wigley,et al.  Molecular determinants responsible for recognition of the single-stranded DNA regulatory sequence, χ, by RecBCD enzyme , 2012, Proceedings of the National Academy of Sciences.

[7]  Catherine L. Guay,et al.  Analysis of MRE11's function in the 5′→3′ processing of DNA double-strand breaks , 2012, Nucleic acids research.

[8]  D. Wigley,et al.  Insights into Chi recognition from the structure of an AddAB-type helicase–nuclease complex , 2012, The EMBO journal.

[9]  Luca Pellegrini,et al.  Structural and functional insights into DNA-end processing by the archaeal HerA helicase–NurA nuclease complex , 2011, Nucleic acids research.

[10]  D. Ferguson,et al.  Mre11 regulates CtIP–dependent double strand break repair by interaction with CDK2 , 2011, Nature Structural &Molecular Biology.

[11]  Yunje Cho,et al.  Crystal structure of the NurA–dAMP–Mn2+ complex , 2011, Nucleic acids research.

[12]  M. J. Neale,et al.  Bidirectional resection of DNA double-strand breaks by Mre11 and Exo1 , 2011, Nature.

[13]  P. Russell,et al.  Release of Ku and MRN from DNA Ends by Mre11 Nuclease Activity and Ctp1 Is Required for Homologous Recombination Repair of Double-Strand Breaks , 2011, PLoS genetics.

[14]  Steven S. Foster,et al.  Functional Interplay of the Mre11 Nuclease and Ku in the Response to Replication-Associated DNA Damage , 2011, Molecular and Cellular Biology.

[15]  Yunje Cho,et al.  Crystal structure of the Mre11-Rad50-ATPγS complex: understanding the interplay between Mre11 and Rad50. , 2011, Genes & development.

[16]  J. Söding,et al.  The Mre11:Rad50 Structure Shows an ATP-Dependent Molecular Clamp in DNA Double-Strand Break Repair , 2011, Cell.

[17]  P. Russell,et al.  ABC ATPase signature helices in Rad50 link nucleotide state to Mre11 interface for DNA repair , 2011, Nature Structural &Molecular Biology.

[18]  Paul Modrich,et al.  BLM-DNA2-RPA-MRN and EXO1-BLM-RPA-MRN constitute two DNA end resection machineries for human DNA break repair. , 2011, Genes & development.

[19]  M. F. White Homologous recombination in the archaea: the means justify the ends. , 2011, Biochemical Society transactions.

[20]  J. Petrini,et al.  The MRE11 complex: starting from the ends , 2011, Nature Reviews Molecular Cell Biology.

[21]  M. Dillingham,et al.  The AddAB helicase–nuclease catalyses rapid and processive DNA unwinding using a single Superfamily 1A motor domain , 2010, Nucleic acids research.

[22]  T. Paull,et al.  Mre11–Rad50–Xrs2 and Sae2 promote 5’ strand resection of DNA double-strand breaks , 2010, Nature Structural &Molecular Biology.

[23]  Yu Zhang,et al.  Saccharomyces cerevisiae Mre11/Rad50/Xrs2 and Ku proteins regulate association of Exo1 and Dna2 with DNA breaks , 2010, The EMBO journal.

[24]  Eleni P. Mimitou,et al.  Ku prevents Exo1 and Sgs1‐dependent resection of DNA ends in the absence of a functional MRX complex or Sae2 , 2010, The EMBO journal.

[25]  Rohit Prakash,et al.  Mechanism of the ATP-dependent DNA end-resection machinery from Saccharomyces cerevisiae , 2010, Nature.

[26]  S. Kowalczykowski,et al.  DNA end resection by Dna2-Sgs1-RPA and its stimulation by Top3-Rmi1 and Mre11-Rad50-Xrs2 , 2010, Nature.

[27]  M. Lieber,et al.  The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. , 2010, Annual review of biochemistry.

[28]  P. Russell,et al.  Phosphorylation-regulated binding of Ctp1 to Nbs1 is critical for repair of DNA double-strand breaks , 2010, Cell cycle.

[29]  S. Shuman,et al.  Characterization of the Mycobacterial AdnAB DNA Motor Provides Insights into the Evolution of Bacterial Motor-Nuclease Machines* , 2009, The Journal of Biological Chemistry.

[30]  John A. Tainer,et al.  Nbs1 Flexibly Tethers Ctp1 and Mre11-Rad50 to Coordinate DNA Double-Strand Break Processing and Repair , 2009, Cell.

[31]  M. Glickman,et al.  AdnAB: a new DSB-resecting motor-nuclease from mycobacteria. , 2009, Genes & development.

[32]  S. Lovett,et al.  Reconstitution of Initial Steps of Dsdna Break Repair by the Recf Material Supplemental , 2022 .

[33]  Eleni P. Mimitou,et al.  Nucleases and helicases take center stage in homologous recombination. , 2009, Trends in biochemical sciences.

[34]  M. Resnick,et al.  Inhibition of DNA double-strand break repair by the Ku heterodimer in mrx mutants of Saccharomyces cerevisiae. , 2009, DNA repair.

[35]  S. Kowalczykowski,et al.  RecBCD Enzyme and the Repair of Double-Stranded DNA Breaks , 2008, Microbiology and Molecular Biology Reviews.

[36]  Paul Modrich,et al.  Human exonuclease 1 and BLM helicase interact to resect DNA and initiate DNA repair , 2008, Proceedings of the National Academy of Sciences.

[37]  T. Paull,et al.  The P. furiosus Mre11/Rad50 Complex Promotes 5′ Strand Resection at a DNA Double-Strand Break , 2008, Cell.

[38]  S. Jackson,et al.  DNA helicases Sgs1 and BLM promote DNA double-strand break resection. , 2008, Genes & development.

[39]  Eleni P. Mimitou,et al.  Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing , 2008, Nature.

[40]  P. Russell,et al.  Mre11 Dimers Coordinate DNA End Bridging and Nuclease Processing in Double-Strand-Break Repair , 2008, Cell.

[41]  S. Jackson,et al.  CDK targets Sae2 to control DNA-end resection and homologous recombination , 2008, Nature.

[42]  Sang Eun Lee,et al.  Sgs1 Helicase and Two Nucleases Dna2 and Exo1 Resect DNA Double-Strand Break Ends , 2008, Cell.

[43]  S. Jackson,et al.  Phospho-dependent interactions between NBS1 and MDC1 mediate chromatin retention of the MRN complex at sites of DNA damage , 2008, EMBO reports.

[44]  J. Blackwood,et al.  SbcCD causes a double-strand break at a DNA palindrome in the Escherichia coli chromosome. , 2008, Molecular cell.

[45]  M. F. White,et al.  The Mre11 protein interacts with both Rad50 and the HerA bipolar helicase and is recruited to DNA following gamma irradiation in the archaeon Sulfolobus acidocaldarius , 2008, BMC Molecular Biology.

[46]  Jiri Bartek,et al.  Human CtIP promotes DNA end resection , 2007, Nature.

[47]  P. Russell,et al.  Ctp1 is a cell-cycle-regulated protein that functions with Mre11 complex to control double-strand break repair by homologous recombination. , 2007, Molecular cell.

[48]  M. Dillingham,et al.  A dual-nuclease mechanism for DNA break processing by AddAB-type helicase-nucleases. , 2007, Journal of molecular biology.

[49]  John A Tainer,et al.  Mre11-Rad50-Nbs1 is a keystone complex connecting DNA repair machinery, double-strand break signaling, and the chromatin template. , 2007, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[50]  Stephen D. Bell,et al.  DNA Replication in the Archaea , 2006, Microbiology and Molecular Biology Reviews.

[51]  F. Chédin,et al.  The AddAB Helicase/Nuclease Forms a Stable Complex with Its Cognate χ Sequence During Translocation* , 2006, Journal of Biological Chemistry.

[52]  S. Kowalczykowski,et al.  The RecA binding locus of RecBCD is a general domain for recruitment of DNA strand exchange proteins. , 2006, Molecular cell.

[53]  M. F. White,et al.  Archaeal DNA replication and repair. , 2005, Current opinion in microbiology.

[54]  C. Guy,et al.  Archaeal Hel308 helicase targets replication forks in vivo and in vitro and unwinds lagging strands , 2005, Nucleic acids research.

[55]  K. Komori,et al.  Identification of a Novel Helicase Activity Unwinding Branched DNAs from the Hyperthermophilic Archaeon, Pyrococcus furiosus* , 2005, Journal of Biological Chemistry.

[56]  M. Kupiec,et al.  The CDK regulates repair of double‐strand breaks by homologous recombination during the cell cycle , 2004, The EMBO journal.

[57]  Dale B. Wigley,et al.  Crystal structure of RecBCD enzyme reveals a machine for processing DNA breaks , 2004, Nature.

[58]  Marco Foiani,et al.  DNA end resection, homologous recombination and DNA damage checkpoint activation require CDK1 , 2004, Nature.

[59]  H. Tauchi,et al.  NBS1 and its functional role in the DNA damage response. , 2004, DNA repair.

[60]  J. Claverys,et al.  rexAB mutants in Streptococcus pneumoniae. , 2004, Microbiology.

[61]  E V Koonin,et al.  A bipolar DNA helicase gene, herA, clusters with rad50, mre11 and nurA genes in thermophilic archaea. , 2004, Nucleic acids research.

[62]  J. Carney,et al.  MlaA, a hexameric ATPase linked to the Mre11 complex in archaeal genomes , 2004, EMBO reports.

[63]  I. Hickson,et al.  RecQ helicases: suppressors of tumorigenesis and premature aging. , 2003, The Biochemical journal.

[64]  Ronald J. Baskin,et al.  A Molecular Throttle The Recombination Hotspot χ Controls DNA Translocation by the RecBCD Helicase , 2003, Cell.

[65]  A. Matsuura,et al.  Competition between the Rad50 Complex and the Ku Heterodimer Reveals a Role for Exo1 in Processing Double-Strand Breaks but Not Telomeres , 2003, Molecular and Cellular Biology.

[66]  D. Leach,et al.  Nucleolytic processing of a protein-bound DNA end by the E. coli SbcCD (MR) complex. , 2003, DNA repair.

[67]  S. Kowalczykowski,et al.  RecBCD enzyme is a bipolar DNA helicase , 2003, Nature.

[68]  Gerald R. Smith,et al.  RecBCD enzyme is a DNA helicase with fast and slow motors of opposite polarity , 2003, Nature.

[69]  J. Tainer,et al.  The Rad50 zinc-hook is a structure joining Mre11 complexes in DNA recombination and repair , 2002, Nature.

[70]  P. Forterre,et al.  NurA, a novel 5′–3′ nuclease gene linked to rad50 and mre11 homologs of thermophilic Archaea , 2002, EMBO reports.

[71]  S. Jackson,et al.  The MRE11 complex: at the crossroads of DNA repair and checkpoint signalling , 2002, Nature Reviews Molecular Cell Biology.

[72]  John A. Tainer,et al.  Structural Biochemistry and Interaction Architecture of the DNA Double-Strand Break Repair Mre11 Nuclease and Rad50-ATPase , 2001, Cell.

[73]  S. Ehrlich,et al.  The Bacillus subtilis AddAB helicase/nuclease is regulated by its cognate Chi sequence in vitro. , 2000, Journal of molecular biology.

[74]  S. Kowalczykowski,et al.  Identification of the RecA protein-loading domain of RecBCD enzyme. , 2000, Journal of molecular biology.

[75]  L. Kirkham,et al.  The SbcCD nuclease of Escherichia coli is a structural maintenance of chromosomes (SMC) family protein that cleaves hairpin DNA. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[76]  S. Bell,et al.  Transcription and translation in Archaea: a mosaic of eukaryal and bacterial features. , 1998, Trends in microbiology.

[77]  T. Paull,et al.  The 3' to 5' exonuclease activity of Mre 11 facilitates repair of DNA double-strand breaks. , 1998, Molecular cell.

[78]  A. Gruss,et al.  Edinburgh Research Explorer Identification of the lactococcal exonuclease/recombinase and its modulation by the putative Chi sequence , 2022 .

[79]  Daniel G. Anderson,et al.  The Translocating RecBCD Enzyme Stimulates Recombination by Directing RecA Protein onto ssDNA in a χ-Regulated Manner , 1997, Cell.

[80]  J. Kooistra,et al.  The Bacillus subtilis addAB genes are fully functional in Escherichia coli , 1993, Molecular microbiology.

[81]  R. G. Lloyd,et al.  Identification of sbcD mutations as cosuppressors of recBC that allow propagation of DNA palindromes in Escherichia coli K-12 , 1992, Journal of bacteriology.

[82]  梅津 桂子 Escherichia coli RecQ protein is a DNA helicase , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[83]  K. Nakayama,et al.  Escherichia coli RecQ protein is a DNA helicase. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[84]  S. Lovett,et al.  Identification and purification of a single-stranded-DNA-specific exonuclease encoded by the recJ gene of Escherichia coli. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[85]  R. G. Lloyd,et al.  Identification and genetic analysis of sbcC mutations in commonly used recBC sbcB strains of Escherichia coli K-12 , 1985, Journal of bacteriology.

[86]  F. Stahl,et al.  Rec-mediated recombinational hot spot activity in bacteriophage lambda. III. Chi mutations are site-mutations stimulating rec-mediated recombination. , 1975, Journal of molecular biology.

[87]  F. Stahl,et al.  Rec-mediated recombinational hot spot activity in bacteriophage λ , 1974, Molecular and General Genetics MGG.

[88]  Z. Horii,et al.  Genetic analysis of the recF pathway to genetic recombination in Escherichia coli K12: isolation and characterization of mutants. , 1973, Journal of molecular biology.

[89]  Jiri Bartek,et al.  ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks , 2006, Nature Cell Biology.

[90]  Eugene V Koonin,et al.  Comparative genomics of the FtsK-HerA superfamily of pumping ATPases: implications for the origins of chromosome segregation, cell division and viral capsid packaging. , 2004, Nucleic acids research.

[91]  R. G. Lloyd,et al.  Inducible expression of a gene specific to the RecF pathway for recombination in Escherichia coli K12 , 2004, Molecular and General Genetics MGG.

[92]  K. Nakayama,et al.  The recQ gene of Escherichia coli K12: molecular cloning and isolation of insertion mutants , 2004, Molecular and General Genetics MGG.