Carbonate Detection With SuperCam in Igneous Rocks on the Floor of Jezero Crater, Mars

Perseverance explored two geological units on the floor of Jezero Crater over the first 420 Martian days of the Mars2020 mission. These units, the Máaz and Séítah formations, are interpreted to be igneous in origin, with traces of alteration. We report the detection of carbonate phases along the rover traverse based on laser‐induced breakdown spectroscopy (LIBS), infrared reflectance spectroscopy (IRS), and time‐resolved Raman (TRR) spectroscopy by the SuperCam instrument. Carbonates are identified through direct detection of vibrational modes of CO3 functional groups (IRS and TRR), major oxides content, and ratios of C and O signal intensities (LIBS). In Séítah, the carbonates are consistent with magnesite‐siderite solid solutions (Mg# of 0.42–0.70) with low calcium contents (<5 wt.% CaO). They are detected together with olivine in IRS and TRR spectra. LIBS and IRS also indicate a spatial association of the carbonates with clays. Carbonates in Máaz are detected in fewer points, as: (a) siderite (Mg# as low as 0.03); (b) carbonate‐containing coatings, enriched in Mg (Mg# ∼0.82) and spatially associated with different salts. Overall, using conservative criteria, carbonate detections are rare in LIBS (∼30/2,000 points), IRS (∼15/2,000 points), and TRR (1/150 points) data. This is best explained by (a) a low carbonate content overall, (b) small carbonate grains mixed with other phases, (c) intrinsic complexity of in situ measurements. This is consistent with orbital observations of Jezero crater, and similar to compositions of carbonates previously reported in Martian meteorites. This suggests a limited carbonation of Jezero rocks by locally equilibrated fluids.

[1]  O. Forni,et al.  Reflectance of Jezero Crater Floor: 1. Data Processing and Calibration of the Infrared Spectrometer (IRS) on SuperCam , 2022, Journal of Geophysical Research: Planets.

[2]  O. Forni,et al.  Reflectance of Jezero Crater Floor: 2. Mineralogical Interpretation , 2022, Journal of Geophysical Research: Planets.

[3]  R. Wiens,et al.  Aqueous alteration processes in Jezero crater, Mars−implications for organic geochemistry , 2022, Science.

[4]  O. Forni,et al.  A Mars 2020 Perseverance SuperCam Perspective on the Igneous Nature of the Máaz Formation at Jezero Crater and Link With Séítah, Mars , 2022, Journal of Geophysical Research: Planets.

[5]  Austin P. Wright,et al.  Alteration history of Séítah formation rocks inferred by PIXL x-ray fluorescence, x-ray diffraction, and multispectral imaging on Mars , 2022, Science advances.

[6]  J. Bridges,et al.  Mars Science Laboratory CheMin Data From the Glen Torridon Region and the Significance of Lake‐Groundwater Interactions in Interpreting Mineralogy and Sedimentary History , 2022, Journal of Geophysical Research: Planets.

[7]  W. T. Elam,et al.  An olivine cumulate outcrop on the floor of Jezero crater, Mars , 2022, Science.

[8]  Linda C. Kah,et al.  Aqueously altered igneous rocks sampled on the floor of Jezero crater, Mars , 2022, Science.

[9]  Linda C. Kah,et al.  Compositionally and density stratified igneous terrain in Jezero crater, Mars , 2022, Science advances.

[10]  E. Cloutis,et al.  The power of paired proximity science observations: Co-located data from SHERLOC and PIXL on Mars , 2022, Icarus.

[11]  O. Forni,et al.  Homogeneity assessment of the SuperCam calibration targets onboard rover perseverance. , 2022, Analytica chimica acta.

[12]  O. Forni,et al.  Optical calibration of the SuperCam instrument body unit spectrometers. , 2022, Applied optics.

[13]  I. Osticioli,et al.  Exploring grain sizing of sedimentary calcareous rocks using Raman spectroscopy , 2022, The European Physical Journal Plus.

[14]  J. Bridges,et al.  Carbonate dissolution and replacement by odinite and saponite in the lafayette nakhlite: part of the CO2-CH4 cycle on mars? , 2022, Geochimica et Cosmochimica Acta.

[15]  O. Forni,et al.  SuperCam calibration targets on board the perseverance rover: Fabrication and quantitative characterization , 2021, Spectrochimica Acta Part B: Atomic Spectroscopy.

[16]  O. Forni,et al.  Post-landing major element quantification using SuperCam laser induced breakdown spectroscopy , 2021, Spectrochimica Acta Part B: Atomic Spectroscopy.

[17]  O. Forni,et al.  The SuperCam infrared spectrometer for the perseverance rover of the Mars2020 mission , 2021, Icarus.

[18]  E. Cloutis,et al.  Characteristics, Origins, and Biosignature Preservation Potential of Carbonate‐Bearing Rocks Within and Outside of Jezero Crater , 2021, Journal of geophysical research. Planets.

[19]  Linda C. Kah,et al.  Perseverance rover reveals an ancient delta-lake system and flood deposits at Jezero crater, Mars , 2021, Science.

[20]  R. Wiens,et al.  The Supercam Microphone to support LIBS investigation on Mars: review of the first laser-spark recordings. , 2021 .

[21]  D. Ming,et al.  Brine-driven destruction of clay minerals in Gale crater, Mars , 2021, Science.

[22]  B. Ehlmann,et al.  Formation of Magnesium Carbonates on Earth and Implications for Mars , 2021, Journal of geophysical research. Planets.

[23]  J. Grotzinger,et al.  Searching for biosignatures in sedimentary rocks from early Earth and Mars , 2021, Nature Reviews Earth & Environment.

[24]  M. J. Calaway,et al.  Perseverance’s Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) Investigation , 2021, Space Science Reviews.

[25]  D. Moreira,et al.  Integrative analysis of the mineralogical and chemical composition of modern microbialites from ten Mexican lakes: What do we learn about their formation? , 2021, Geochimica et Cosmochimica Acta.

[26]  M. Richardson,et al.  Warm early Mars surface enabled by high-altitude water ice clouds , 2021, Proceedings of the National Academy of Sciences.

[27]  T. Glotch,et al.  Distinct Carbonate Lithologies in Jezero Crater, Mars , 2021, Geophysical research letters.

[28]  A. Treiman Uninhabitable and Potentially Habitable Environments on Mars: Evidence from Meteorite ALH 84001. , 2021, Astrobiology.

[29]  A. Doressoundiram,et al.  The SuperCam Instrument Suite on the Mars 2020 Rover: Science Objectives and Mast-Unit Description , 2021, Space Science Reviews.

[30]  Justin M. McGlown,et al.  The SuperCam Instrument Suite on the NASA Mars 2020 Rover: Body Unit and Combined System Tests , 2020, Space Science Reviews.

[31]  R. Wiens,et al.  Mars 2020 Mission Overview , 2020, Space Science Reviews.

[32]  P. Bernardi,et al.  SuperCam Calibration Targets: Design and Development , 2020, Space Science Reviews.

[33]  Todd W. Parker,et al.  PIXL: Planetary Instrument for X-Ray Lithochemistry , 2020, Space Science Reviews.

[34]  J. Madariaga,et al.  Development of innovative non-destructive analytical strategies for Mars Sample Return tested on Dar al Gani 735 Martian Meteorite. , 2020, Talanta.

[35]  Linda C. Kah,et al.  Photogeologic Map of the Perseverance Rover Field Site in Jezero Crater Constructed by the Mars 2020 Science Team , 2020, Space Science Reviews.

[36]  P. Renforth,et al.  Engineered carbon mineralization in ultramafic rocks for CO2 removal from air: Review and new insights , 2020 .

[37]  M. Lee,et al.  Exploring Mars at the nanoscale: Applications of transmission electron microscopy and atom probe tomography in planetary exploration , 2020, IOP Conference Series: Materials Science and Engineering.

[38]  V. Sautter,et al.  Tardi-magmatic precipitation of Martian Fe/Mg-rich clay minerals via igneous differentiation , 2020 .

[39]  N. Tosca,et al.  Growth kinetics of siderite at 298.15 K and 1 bar , 2020, Geochimica et Cosmochimica Acta.

[40]  M. Rice,et al.  The mineral diversity of Jezero crater: Evidence for possible lacustrine carbonates on Mars , 2020, Icarus.

[41]  J. Grant,et al.  Results from the first geologic traverse on the topographic rim of a complex impact crater, Endeavour Crater, Mars , 2020 .

[42]  N. Tosca,et al.  Geochemical controls on the elemental composition of siderite: Implications for palaeo-environmental reconstructions , 2020, Geochimica et Cosmochimica Acta.

[43]  N. Mangold,et al.  Refining the age, emplacement and alteration scenarios of the olivine-rich unit in the Nili Fossae region, Mars , 2020 .

[44]  R. Clark,et al.  Visible and Near-Infrared Reflectance Spectroscopy , 2019, Remote Compositional Analysis.

[45]  O. Gasnault,et al.  Contribution of a martian atmosphere to laser-induced breakdown spectroscopy (LIBS) data and testing its emission characteristics for normalization applications , 2019, Icarus.

[46]  D. Moreira,et al.  Fe-bearing phases in modern lacustrine microbialites from Mexico , 2019, Geochimica et Cosmochimica Acta.

[47]  C. Viviano,et al.  Olivine-Carbonate Mineralogy of the Jezero Crater Region , 2019, Journal of geophysical research. Planets.

[48]  F. Poulet,et al.  Detection of Carbonates in Martian Weathering Profiles , 2019, Journal of Geophysical Research: Planets.

[49]  H. Y. McSween,et al.  The potential science and engineering value of samples delivered to Earth by Mars sample return , 2019, Meteoritics & Planetary Science.

[50]  J. Head,et al.  Healthy debate on early Mars , 2018, Nature Geoscience.

[51]  C. Russell,et al.  Loss of the Martian atmosphere to space: Present-day loss rates determined from MAVEN observations and integrated loss through time , 2018, Icarus.

[52]  O. Forni,et al.  Martian Eolian Dust Probed by ChemCam , 2018, Geophysical Research Letters.

[53]  K. Benzerara,et al.  Mineralogical Identification of Traces of Life , 2018, Biosignatures for Astrobiology.

[54]  B. Jakosky,et al.  Inventory of CO2 available for terraforming Mars , 2018, Nature Astronomy.

[55]  R. Wiens,et al.  Spark plasma sintering preparation of reference targets for field spectroscopy on Mars , 2018, Journal of Raman Spectroscopy.

[56]  R. Craddock,et al.  The geological and climatological case for a warmer and wetter early Mars , 2018, Nature Geoscience.

[57]  Andrew Steele,et al.  Evolved gas analyses of sedimentary rocks and eolian sediment in Gale Crater, Mars: Results of the Curiosity rover's sample analysis at Mars instrument from Yellowknife Bay to the Namib Dune , 2017 .

[58]  M. Salvatore,et al.  Bulk mineralogy of the NE Syrtis and Jezero crater regions of Mars derived through thermal infrared spectral analyses , 2017 .

[59]  J. Michalski,et al.  Ancient hydrothermal seafloor deposits in Eridania basin on Mars , 2017, Nature Communications.

[60]  S. Maurice,et al.  Analysis of carbon and nitrogen signatures with laser-induced breakdown spectroscopy; the quest for organics under Mars-like conditions , 2017 .

[61]  O. Forni,et al.  Characterization of LIBS emission lines for the identification of chlorides, carbonates, and sulfates in salt/basalt mixtures for the application to MSL ChemCam data , 2017 .

[62]  O. Forni,et al.  Searching for Carbon on Mars with MSL/ChemCam , 2017 .

[63]  Y. Yung,et al.  Methane bursts as a trigger for intermittent lake-forming climates on post-Noachian Mars , 2016, 1611.01717.

[64]  S. Murchie,et al.  Orbital evidence for more widespread carbonate‐bearing rocks on Mars , 2016 .

[65]  Ashwin R. Vasavada,et al.  ChemCam activities and discoveries during the nominal mission of the Mars Science Laboratory in Gale crater, Mars , 2016 .

[66]  Hua Guo,et al.  Mineralogical evolution of Fe–Si-rich layers at the olivine-water interface during carbonation reactions , 2015 .

[67]  B. Ehlmann,et al.  Carbon sequestration on Mars , 2015 .

[68]  E. Hauber,et al.  Outgassing History and Escape of the Martian Atmosphere and Water Inventory , 2015, 1506.06569.

[69]  John F. Mustard,et al.  Assessing the mineralogy of the watershed and fan deposits of the Jezero crater paleolake system, Mars , 2015 .

[70]  R. A. McInroy,et al.  Understanding the signature of rock coatings in laser-induced breakdown spectroscopy data , 2015 .

[71]  Jean-Pierre Bibring,et al.  Widespread surface weathering on early Mars: A case for a warmer and wetter climate , 2015 .

[72]  M. Thiemens,et al.  Carbonate formation events in ALH 84001 trace the evolution of the Martian atmosphere , 2014, Proceedings of the National Academy of Sciences.

[73]  P. Hamilton,et al.  Stevensite in the modern thrombolites of Lake Clifton, Western Australia: A missing link in microbialite mineralization? , 2014 .

[74]  John F. Mustard,et al.  Revised CRISM spectral parameters and summary products based on the currently detected mineral diversity on Mars , 2014 .

[75]  S. Ruff,et al.  Evidence for a Noachian-Aged Ephemeral Lake in Gusev Crater, Mars , 2014 .

[76]  D. Ming,et al.  Abundances and implications of volatile‐bearing species from evolved gas analysis of the Rocknest aeolian deposit, Gale Crater, Mars , 2014 .

[77]  Martin R. Lee,et al.  Sequestration of Martian CO2 by mineral carbonation , 2013, Nature Communications.

[78]  M B Madsen,et al.  Soil Diversity and Hydration as Observed by ChemCam at Gale Crater, Mars , 2013, Science.

[79]  M. Darby Dyar,et al.  Coordinated spectral and XRD analyses of magnesite‐nontronite‐forsterite mixtures and implications for carbonates on Mars , 2013 .

[80]  F. G. Carrozzo,et al.  Detection of Carbonate Bearing-Rocks in Craters Uplifts of Tyrrhena Terra, Mars , 2013 .

[81]  B. Schmitt,et al.  Gas-solid carbonation as a possible source of carbonates in cold planetary environments , 2013 .

[82]  J. Bridges,et al.  The nakhlite hydrothermal brine on Mars , 2012 .

[83]  M. Saccoccio,et al.  The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Science Objectives and Mast Unit Description , 2012 .

[84]  N. Bridges,et al.  The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Body Unit and Combined System Tests , 2012 .

[85]  H. V. Lauer,et al.  Signatures in magnetites formed by (Ca,Mg,Fe)CO3 thermal decomposition: Terrestrial and extraterrestrial implications , 2012 .

[86]  O. Forni,et al.  Deciphering Sample and Atmospheric Oxygen Contents with ChemCam on Mars , 2012 .

[87]  H. V. Lauer,et al.  The detection of carbonate in the martian soil at the Phoenix Landing site: A laboratory investigation and comparison with the Thermal and Evolved Gas Analyzer (TEGA) data , 2012 .

[88]  W. Fischer,et al.  Carbonates in the Martian meteorite Allan Hills 84001 formed at 18 ± 4 °C in a near-surface aqueous environment , 2011, Proceedings of the National Academy of Sciences.

[89]  Bruce A. Campbell,et al.  Massive CO2 Ice Deposits Sequestered in the South Polar Layered Deposits of Mars , 2011, Science.

[90]  John Frederick Rudge,et al.  Rates and mechanisms of mineral carbonation in peridotite: natural processes and recipes for enhanced, in situ CO2 capture and storage , 2011 .

[91]  J. Bridges,et al.  Alteration assemblages in the nakhlites: Variation with depth on Mars , 2010 .

[92]  R. Sullivan,et al.  Detection of oxygen isotopic anomaly in terrestrial atmospheric carbonates and its implications to Mars , 2010, Proceedings of the National Academy of Sciences.

[93]  Raymond E. Arvidson,et al.  Identification of Carbonate-Rich Outcrops on Mars by the Spirit Rover , 2010, Science.

[94]  A. Fairén,et al.  A cold and wet Mars , 2010 .

[95]  B. Ménez,et al.  Calibration of carbonate composition using micro-Raman analysis: application to planetary surface exploration. , 2010, Astrobiology.

[96]  Simon J. Hook,et al.  HYDROTHERMAL FORMATION OF CLAY-CARBONATE ALTERATION ASSEMBLAGES IN THE , 2010, 1402.1150.

[97]  David S. McKay,et al.  Origins of magnetite nanocrystals in Martian meteorite ALH84001 , 2009 .

[98]  A. Zinzi,et al.  Evidence for Mg-rich carbonates on Mars from a 3.9 μm absorption feature , 2009 .

[99]  D. Ming,et al.  Evidence for Calcium Carbonate at the Mars Phoenix Landing Site , 2009, Science.

[100]  C. McKay,et al.  Stability against freezing of aqueous solutions on early Mars , 2009, Nature.

[101]  John F. Mustard,et al.  Orbital Identification of Carbonate-Bearing Rocks on Mars , 2008 .

[102]  Haoyan Guo,et al.  The Application of Mexican Hat Wavelet Filtering and Averaging Algorithm in Raman Spectra Denoising , 2008, 2008 Congress on Image and Signal Processing.

[103]  S. Clegg,et al.  Combined remote LIBS and Raman spectroscopy at 8.6m of sulfur-containing minerals, and minerals coated with hematite or covered with basaltic dust. , 2007, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[104]  T. Encrenaz,et al.  Mars Surface Diversity as Revealed by the OMEGA/Mars Express Observations , 2005, Science.

[105]  James M. Dohm,et al.  Inhibition of carbonate synthesis in acidic oceans on early Mars , 2004, Nature.

[106]  R Sullivan,et al.  The Spirit Rover's Athena science investigation at Gusev Crater, Mars. , 2004, Science.

[107]  R E Arvidson,et al.  Initial Results from the Mini-TES Experiment in Gusev Crater from the Spirit Rover , 2004, Science.

[108]  H. V. Lauer,et al.  Evidence for exclusively inorganic formation of magnetite in Martian meteorite ALH84001 , 2004 .

[109]  N. Kazancı,et al.  On the limnology of Salda Lake, a large and deep soda lake in southwestern Turkey: future management proposals , 2004 .

[110]  Geológia Carbonates on Mars , 2003, Science.

[111]  J. Bandfield,et al.  Spectroscopic Identification of Carbonate Minerals in the Martian Dust , 2003, Science.

[112]  David C. Catling,et al.  Alteration Assemblages in Martian Meteorites: Implications for Near-Surface Processes , 2001 .

[113]  John Bridges,et al.  Evaporite mineral assemblages in the nakhlite (martian) meteorites , 2000 .

[114]  D J Des Marais,et al.  Exploring for a record of ancient Martian life. , 1999, Journal of geophysical research.

[115]  H. Wiesmann,et al.  The age of the carbonates in martian meteorite ALH84001. , 1999, Science.

[116]  D. Maktav,et al.  Search for signs of ancient life on Mars: expectations from hydromagnesite microbialites, Salda Lake, Turkey , 1999, Journal of the Geological Society.

[117]  J. Bridges,et al.  A halite‐siderite‐anhydrite‐chlorapatite assemblage in Nakhla: Mineralogical evidence for evaporites on Mars , 1999 .

[118]  P. H. Warren,et al.  Petrologic evidence for low-temperature, possibly flood evaporitic origin of carbonates in the ALH84001 meteorite. , 1998, Journal of geophysical research.

[119]  T. Hiroi,et al.  Recognition of minor constituents in reflectance spectra of Allan Hills 84001 chips and the importance for remote sensing on Mars , 1998 .

[120]  T. Hiroi,et al.  Spectroscopic analysis of Martian meteorite Allan Hills 84001 powder and applications for spectral identification of minerals and other soil components on Mars , 1998 .

[121]  E. Gibson,et al.  Low-Temperature Carbonate Concretions in the Martian Meteorite ALH84001: Evidence from Stable Isotopes and Mineralogy , 1997, Science.

[122]  Harry Y. McSween,et al.  A possible high-temperature origin for the carbonates in the martian meteorite ALH84001 , 1996, Nature.

[123]  A. Zent,et al.  Simultaneous adsorption of CO2 and H2O under Mars‐like conditions and application to the evolution of the Martian climate , 1994 .

[124]  O. Forni,et al.  EVIDENCE FOR PERCHLORATE AND SULFATE SALTS IN JEZERO CRATER, MARS, FROM SUPERCAM OBSERVATIONS , 2022 .

[125]  B. Jolliff,et al.  MARTIAN CARBONATES GENERATED BY ATMOSPHERE-SURFACE INTERACTION , 2022 .

[126]  R. Wiens,et al.  MINERALOGY, MORPHOLOGY, AND GEOCHRONOLOGICAL SIGNIFICANCE OF THE MÁAZ FORMATION AND THE JEZERO CRATER FLOOR. , 2022 .

[127]  J. Bell,et al.  STRATIGRAPHY AND MINERALOGY OF THE DEPOSITS WITHIN SÉÍTAH REGION ON THE FLOOR OF JEZERO CRATER, MARS AS SEEN WITH MASTCAM-Z. , 2022 .

[128]  O. Forni,et al.  MODAL MINERALOGY OF SEITAH UNIT IN JEZERO CRATER (MARS) RETRIEVED FROM NONLINEAR UNMIXING ANALYSES OF IRS/SUPERCAM. , 2022 .

[129]  O. Forni,et al.  COMPARISON OF DUST BETWEEN GALE AND JEZERO. , 2022 .

[130]  J. Bell,et al.  PERSEVERANCE AND THE PURPLE COATING: A MASTCAM-Z MULTISPECTRAL STORY. , 2022 .

[131]  D. Ming,et al.  THE MINERALOGY AND SEDIMENTARY HISTORY OF THE GLEN TORRIDON REGION , GALE CRATER , MARS , 2021 .

[132]  F. G. Carrozzo,et al.  Geology and mineralogy of the Auki Crater, Tyrrhena Terra, Mars: A possible post impact-induced hydrothermal system , 2017 .

[133]  R. Morris,et al.  Geochemistry of Carbonates on Mars: Implications for Climate History and Nature of Aqueous Environments , 2013 .

[134]  S. Clegg,et al.  Preliminary Results on the Capabilities of the ChemCam Laser-Induced Breakdown Spectroscopy (LIBS) Instrument to Detect Carbon on Mars , 2011 .

[135]  K. Zahnle,et al.  Thick and thin models of the evolution of carbon dioxide on Mars , 2006 .