Large-scale parsimony analysis of metazoan indels in protein-coding genes.

Insertions and deletions (indels) are considered to be rare evolutionary events, the analysis of which may resolve controversial phylogenetic relationships. Indeed, indel characters are often assumed to be less homoplastic than amino acid and nucleotide substitutions and, consequently, more reliable markers for phylogenetic reconstruction. In this study, we analyzed indels from over 1,000 metazoan orthologous genes. We studied the impact of different species sampling, ortholog data sets, lengths of included indels, and indel-coding methods on the resulting metazoan tree. Our results show that, similar to sequence substitutions, indels are homoplastic characters, and their analysis is sensitive to the long-branch attraction artifact. Furthermore, improving the taxon sampling and choosing a closely related outgroup greatly impact the phylogenetic inference. Our indel-based inferences support the Ecdysozoa hypothesis over the Coelomata hypothesis and suggest that sponges are a sister clade to other animals.

[1]  H. Philippe,et al.  Multigene analyses of bilaterian animals corroborate the monophyly of Ecdysozoa, Lophotrochozoa, and Protostomia. , 2005, Molecular biology and evolution.

[2]  T. Gojobori,et al.  Bmc Evolutionary Biology the Evolutionary Position of Nematodes , 2022 .

[3]  O. Madsen,et al.  Indels in protein-coding sequences of Euarchontoglires constrain the rooting of the eutherian tree. , 2003, Molecular phylogenetics and evolution.

[4]  Radhey S. Gupta Molecular signatures (unique proteins and conserved indels) that are specific for the epsilon proteobacteria (Campylobacterales) , 2006, BMC Genomics.

[5]  David G. Lloyd,et al.  Multi‐residue gaps, a class of molecular characters with exceptional reliability for phylogenetic analyses , 1991 .

[6]  B. Schierwater,et al.  Mitochondrial genome of Trichoplax adhaerens supports placozoa as the basal lower metazoan phylum. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[7]  K. Müller SeqState: primer design and sequence statistics for phylogenetic DNA datasets. , 2005, Applied bioinformatics.

[8]  P. Holland,et al.  Rare genomic changes as a tool for phylogenetics. , 2000, Trends in ecology & evolution.

[9]  X. Huang,et al.  CAP3: A DNA sequence assembly program. , 1999, Genome research.

[10]  J. Huelsenbeck,et al.  Bayesian Inference of the Metazoan Phylogeny A Combined Molecular and Morphological Approach , 2004, Current Biology.

[11]  M. Irimia,et al.  Rare Genomic Characters Do Not Support Coelomata: RGC_CAMs , 2008, Journal of Molecular Evolution.

[12]  H. Philippe,et al.  Suppression of long-branch attraction artefacts in the animal phylogeny using a site-heterogeneous model , 2007, BMC Evolutionary Biology.

[13]  Kenneth M. Halanych,et al.  The New View of Animal Phylogeny , 2004 .

[14]  Mark P. Simmons,et al.  Gaps as characters in sequence-based phylogenetic analyses. , 2000, Systematic biology.

[15]  H Philippe,et al.  Species sampling has a major impact on phylogenetic inference. , 1993, Molecular phylogenetics and evolution.

[16]  E. Koonin,et al.  Coelomata and not Ecdysozoa: evidence from genome-wide phylogenetic analysis. , 2003, Genome research.

[17]  J. McInerney,et al.  The Opisthokonta and the Ecdysozoa may not be clades: stronger support for the grouping of plant and animal than for animal and fungi and stronger support for the Coelomata than Ecdysozoa. , 2005, Molecular biology and evolution.

[18]  Mark P. Simmons,et al.  Incorporation, relative homoplasy, and effect of gap characters in sequence-based phylogenetic analyses. , 2001, Systematic biology.

[19]  David Q. Matus,et al.  Broad phylogenomic sampling improves resolution of the animal tree of life , 2008, Nature.

[20]  K. Müller,et al.  Incorporating information from length-mutational events into phylogenetic analysis. , 2006, Molecular phylogenetics and evolution.

[21]  R. Raff Understanding Evolution: The Next Step. (Book Reviews: The Shape of Life. Genes, Development, and the Evolution of Animal Form.) , 1996 .

[22]  G. Gilbert,et al.  THE NEW VIEW OF ANIMAL PHYLOGENY , 2005 .

[23]  Mark P. Simmons,et al.  The relative performance of indel-coding methods in simulations. , 2007, Molecular phylogenetics and evolution.

[24]  H. Philippe,et al.  How good are deep phylogenetic trees? , 1998, Current opinion in genetics & development.

[25]  A. Collins,et al.  Evaluating hypotheses of basal animal phylogeny using complete sequences of large and small subunit rRNA , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Radhey S. Gupta,et al.  Phylogenomics and signature proteins for the alpha Proteobacteria and its main groups , 2007, BMC Microbiology.

[27]  Albert J. Vilella,et al.  EnsemblCompara GeneTrees: Complete, duplication-aware phylogenetic trees in vertebrates. , 2009, Genome research.

[28]  J. Felsenstein CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP , 1985, Evolution; international journal of organic evolution.

[29]  Darren A. Natale,et al.  The COG database: an updated version includes eukaryotes , 2003, BMC Bioinformatics.

[30]  Liran Carmel,et al.  Ecdysozoan clade rejected by genome-wide analysis of rare amino acid replacements. , 2007, Molecular biology and evolution.

[31]  Chuong B. Do,et al.  ProbCons: Probabilistic consistency-based multiple sequence alignment. , 2005, Genome research.

[32]  Nicholas H. Putnam,et al.  The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans , 2008, Nature.

[33]  Chris Smith,et al.  Large-Scale Trends in the Evolution of Gene Structures within 11 Animal Genomes , 2006, PLoS Comput. Biol..

[34]  A. R. Templeton,et al.  PHYLOGENETIC INFERENCE FROM RESTRICTION ENDONUCLEASE CLEAVAGE SITE MAPS WITH PARTICULAR REFERENCE TO THE EVOLUTION OF HUMANS AND THE APES , 1983, Evolution; international journal of organic evolution.

[35]  H. Philippe,et al.  Improvement of molecular phylogenetic inference and the phylogeny of Bilateria , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[36]  C. V. Jongeneel,et al.  ESTScan: A Program for Detecting, Evaluating, and Reconstructing Potential Coding Regions in EST Sequences , 1999, ISMB.

[37]  J. Garcia-Fernández,et al.  Rare coding sequence changes are consistent with Ecdysozoa, not Coelomata. , 2007, Molecular biology and evolution.

[38]  Hervé Philippe,et al.  The potential value of indels as phylogenetic markers: position of trichomonads as a case study. , 2002, Molecular biology and evolution.

[39]  John N. A. Hooper,et al.  A new species of Amphimedon (Porifera, Demospongiae, Haplosclerida, Niphatidae) from the Capricorn-Bunker Group of Islands, Great Barrier Reef, Australia: target species for the "sponge genome project" , 2006 .

[40]  B Franz Lang,et al.  Glass sponges and bilaterian animals share derived mitochondrial genomic features: a common ancestry or parallel evolution? , 2007, Molecular biology and evolution.

[41]  M. Long,et al.  Intron-exon structures of eukaryotic model organisms. , 1999, Nucleic acids research.

[42]  Hervé Philippe,et al.  Lack of resolution in the animal phylogeny: closely spaced cladogeneses or undetected systematic errors? , 2007, Molecular biology and evolution.

[43]  Sarah J. Bourlat,et al.  Testing the new animal phylogeny: a phylum level molecular analysis of the animal kingdom. , 2008, Molecular phylogenetics and evolution.

[44]  Radhey S. Gupta,et al.  The branching order and phylogenetic placement of species from completed bacterial genomes, based on conserved indels found in various proteins , 2001, International microbiology : the official journal of the Spanish Society for Microbiology.

[45]  Wei Qian,et al.  Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. , 2000, Molecular biology and evolution.

[46]  S. Carroll,et al.  Animal Evolution and the Molecular Signature of Radiations Compressed in Time , 2005, Science.

[47]  M. Manuel,et al.  Sponge paraphyly and the origin of Metazoa , 2001, Journal of evolutionary biology.

[48]  D. Swofford PAUP*: Phylogenetic analysis using parsimony (*and other methods), Version 4.0b10 , 2002 .

[49]  A. Graybeal,et al.  Is it better to add taxa or characters to a difficult phylogenetic problem? , 1998, Systematic biology.

[50]  A. Larson The comparison of morphological and molecular data in phylogenetic systematics. , 1994, EXS.

[51]  E. Koonin,et al.  Analysis of rare amino acid replacements supports the Coelomata clade. , 2007, Molecular biology and evolution.

[52]  E. Paradis,et al.  The virtues of gaps: xenarthran (Edentate) monophyly supported by a unique deletion in alpha A-crystallin. , 1999, Systematic biology.

[53]  R. Raff,et al.  Evidence for a clade of nematodes, arthropods and other moulting animals , 1997, Nature.

[54]  Corinne Da Silva,et al.  Phylogenomics Revives Traditional Views on Deep Animal Relationships , 2009, Current Biology.

[55]  B. Schierwater,et al.  Concatenated Analysis Sheds Light on Early Metazoan Evolution and Fuels a Modern “Urmetazoon” Hypothesis , 2009, PLoS biology.

[56]  Dan Graur,et al.  Heads or tails: a simple reliability check for multiple sequence alignments. , 2007, Molecular biology and evolution.

[57]  F. Delsuc,et al.  Phylogenomics and the reconstruction of the tree of life , 2005, Nature Reviews Genetics.

[58]  Tatiana Tatusova,et al.  NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins , 2004, Nucleic Acids Res..

[59]  J. Felsenstein Cases in which Parsimony or Compatibility Methods will be Positively Misleading , 1978 .